This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 823

1992 Putnam, B6

Let $M$ be a set of real $n \times n$ matrices such that i) $I_{n} \in M$, where $I_n$ is the identity matrix. ii) If $A\in M$ and $B\in M$, then either $AB\in M$ or $-AB\in M$, but not both iii) If $A\in M$ and $B \in M$, then either $AB=BA$ or $AB=-BA$. iv) If $A\in M$ and $A \ne I_n$, there is at least one $B\in M$ such that $AB=-BA$. Prove that $M$ contains at most $n^2 $ matrices.

1991 Arnold's Trivium, 91

Find the Jordan normal form of the operator $e^{d/dt}$ in the space of quasi-polynomials $\{e^{\lambda t}p(t)\}$ where the degree of the polynomial $p$ is less than $5$, and of the operator $\text{ad}_A$, $B\mapsto [A, B]$, in the space of $n\times n$ matrices $B$, where $A$ is a diagonal matrix.

1993 Brazil National Olympiad, 2

A real number with absolute value less than $1$ is written in each cell of an $n\times n$ array, so that the sum of the numbers in each $2\times 2$ square is zero. Show that for odd $n$ the sum of all the numbers is less than $n$.

2003 Putnam, 1

Do there exist polynomials $a(x)$, $b(x)$, $c(y)$, $d(y)$ such that \[1 + xy + x^2y^2= a(x)c(y) + b(x)d(y)\] holds identically?

2019 SEEMOUS, 2

Let $A_1, A_2,\dots,A_m\in \mathcal{M}_n(\mathbb{R})$. Prove that there exist $\varepsilon_1,\varepsilon_2,\dots,\varepsilon_m\in \{-1,1\}$ such that: $$\rm{tr}\left( (\varepsilon_1 A_1+\varepsilon_2A_2+\dots+\varepsilon_m A_m)^2\right)\geq \rm{tr}(A_1^2)+\rm{tr}(A_2^2)+\dots+\rm{tr}(A_m^2) $$

2012 Pre-Preparation Course Examination, 2

Prove that if a vector space is the union of some of it's proper subspaces, then number of these subspaces can not be less than the number of elements of the field of that vector space.

1985 Spain Mathematical Olympiad, 8

A square matrix is sum-magic if the sum of all elements in each row, column and major diagonal is constant. Similarly, a square matrix is product-magic if the product of all elements in each row, column and major diagonal is constant. Determine if there exist $3\times 3$ matrices of real numbers which are both sum-magic and product-magic.

2006 India IMO Training Camp, 1

Let $n$ be a positive integer divisible by $4$. Find the number of permutations $\sigma$ of $(1,2,3,\cdots,n)$ which satisfy the condition $\sigma(j)+\sigma^{-1}(j)=n+1$ for all $j \in \{1,2,3,\cdots,n\}$.

2013 Putnam, 6

Define a function $w:\mathbb{Z}\times\mathbb{Z}\to\mathbb{Z}$ as follows. For $|a|,|b|\le 2,$ let $w(a,b)$ be as in the table shown; otherwise, let $w(a,b)=0.$ \[\begin{array}{|lr|rrrrr|}\hline &&&&b&&\\ &w(a,b)&-2&-1&0&1&2\\ \hline &-2&-1&-2&2&-2&-1\\ &-1&-2&4&-4&4&-2\\ a&0&2&-4&12&-4&2\\ &1&-2&4&-4&4&-2\\ &2&-1&-2&2&-2&-1\\ \hline\end{array}\] For every finite subset $S$ of $\mathbb{Z}\times\mathbb{Z},$ define \[A(S)=\sum_{(\mathbf{s},\mathbf{s'})\in S\times S} w(\mathbf{s}-\mathbf{s'}).\] Prove that if $S$ is any finite nonempty subset of $\mathbb{Z}\times\mathbb{Z},$ then $A(S)>0.$ (For example, if $S=\{(0,1),(0,2),(2,0),(3,1)\},$ then the terms in $A(S)$ are $12,12,12,12,4,4,0,0,0,0,-1,-1,-2,-2,-4,-4.$)

2025 Romania National Olympiad, 2

Let $n$ be a positive integer, and $a,b$ be two complex numbers such that $a \neq 1$ and $b^k \neq 1$, for any $k \in \{1,2,\dots ,n\}$. The matrices $A,B \in \mathcal{M}_n(\mathbb{C})$ satisfy the relation $BA=a I_n + bAB$. Prove that $A$ and $B$ are invertible.

1974 IMO Longlists, 43

An $(n^2+n+1) \times (n^2+n+1)$ matrix of zeros and ones is given. If no four ones are vertices of a rectangle, prove that the number of ones does not exceed $(n + 1)(n^2 + n + 1).$

2017 District Olympiad, 3

Let be two matrices $ A,B\in\mathcal{M}_2\left( \mathbb{R} \right) $ that don’t commute. [b]a)[/b] If $ A^3=B^3, $ then $ \text{tr} \left( A^n \right) =\text{tr} \left( B^n \right) , $ for all natural numbers $ n. $ [b]b)[/b] If $ A^n\neq B^n $ and $ \text{tr} \left( A^n \right) =\text{tr} \left( B^n \right) , $ for all natural numbers $ n, $ then find some of the matrices $ A,B. $

1940 Putnam, A8

A triangle is bounded by the lines $a_1 x+ b_1 y +c_1=0$, $a_2 x+ b_2 y +c_2=0$ and $a_2 x+ b_2 y +c_2=0$. Show that its area, disregarding sign, is $$\frac{\Delta^{2}}{2(a_2 b_3- a_3 b_2)(a_3 b_1- a_1 b_3)(a_1 b_2- a_2 b_1)},$$ where $\Delta$ is the discriminant of the matrix $$M=\begin{pmatrix} a_1 & b_1 &c_1\\ a_2 & b_2 &c_2\\ a_3 & b_3 &c_3 \end{pmatrix}.$$

2009 IMC, 5

Let $\mathbb{M}$ be the vector space of $m \times p$ real matrices. For a vector subspace $S\subseteq \mathbb{M}$, denote by $\delta(S)$ the dimension of the vector space generated by all columns of all matrices in $S$. Say that a vector subspace $T\subseteq \mathbb{M}$ is a $\emph{covering matrix space}$ if \[ \bigcup_{A\in T, A\ne \mathbf{0}} \ker A =\mathbb{R}^p \] Such a $T$ is minimal if it doesn't contain a proper vector subspace $S\subset T$ such that $S$ is also a covering matrix space. [list] (a) (8 points) Let $T$ be a minimal covering matrix space and let $n=\dim (T)$ Prove that \[ \delta(T)\le \dbinom{n}{2} \] (b) (2 points) Prove that for every integer $n$ we can find $m$ and $p$, and a minimal covering matrix space $T$ as above such that $\dim T=n$ and $\delta(T)=\dbinom{n}{2}$[/list]

2009 Stars Of Mathematics, 5

The cells of a $(n^2-n+1)\times(n^2-n+1)$ matrix are coloured using $n$ colours. A colour is called [i]dominant[/i] on a row (or a column) if there are at least $n$ cells of this colour on that row (or column). A cell is called [i]extremal[/i] if its colour is [i]dominant [/i] both on its row, and its column. Find all $n \ge 2$ for which there is a colouring with no [i]extremal [/i] cells. Iurie Boreico (Moldova)

2005 Miklós Schweitzer, 10

Given 5 nonzero vectors in three-dimensional Euclidean space, prove that the sum of their pairwise angles is at most $6\pi$.

2005 District Olympiad, 3

a)Let $A,B\in \mathcal{M}_3(\mathbb{R})$ such that $\text{rank}\ A>\text{rank}\ B$. Prove that $\text{rank}\ A^2\ge \text{rank}\ B^2$. b)Find the non-constant polynomials $f\in \mathbb{R}[X]$ such that $(\forall)A,B\in \mathcal{M}_4(\mathbb{R})$ with $\text{rank}\ A>\text{rank}\ B$, we have $\text{rank}\ f(A)>\text{rank}\ f(B)$.

2020 SEEMOUS, Problem 1

Consider $A\in \mathcal{M}_{2020}(\mathbb{C})$ such that $$ (1)\begin{cases} A+A^{\times} =I_{2020},\\ A\cdot A^{\times} =I_{2020},\\ \end{cases} $$ where $A^{\times}$ is the adjugate matrix of $A$, i.e., the matrix whose elements are $a_{ij}=(-1)^{i+j}d_{ji}$, where $d_{ji}$ is the determinant obtained from $A$, eliminating the line $j$ and the column $i$. Find the maximum number of matrices verifying $(1)$ such that any two of them are not similar.

1998 All-Russian Olympiad, 8

Each square of a $(2^n-1) \times (2^n-1)$ board contains either $1$ or $-1$. Such an arrangement is called [i]successful[/i] if each number is the product of its neighbors. Find the number of successful arrangements.

2012 SEEMOUS, Problem 1

Let $A=(a_{ij})$ be the $n\times n$ matrix, where $a_{ij}$ is the remainder of the division of $i^j+j^i$ by $3$ for $i,j=1,2,\ldots,n$. Find the greatest $n$ for which $\det A\ne0$.

1998 Flanders Math Olympiad, 3

a magical $3\times3$ square is a $3\times3$ matrix containing all number from 1 to 9, and of which the sum of every row, every column, every diagonal, are all equal. Determine all magical $3\times3$ square

2006 Iran MO (3rd Round), 4

$f: \mathbb R^{n}\longrightarrow\mathbb R^{n}$ is a bijective map, that Image of every $n-1$-dimensional affine space is a $n-1$-dimensional affine space. 1) Prove that Image of every line is a line. 2) Prove that $f$ is an affine map. (i.e. $f=goh$ that $g$ is a translation and $h$ is a linear map.)

2008 Nordic, 4

The difference between the cubes of two consecutive positive integers is equal to $n^2$ for a positive integer $n$. Show that $n$ is the sum of two squares.

2014 IMS, 6

Let $A=[a_{ij}]_{n \times n}$ be a $n \times n$ matrix whose elements are all numbers which belong to set $\{1,2,\cdots ,n\}$. Prove that by swapping the columns of $A$ with each other we can produce matrix $B=[b_{ij}]_{n \times n}$ such that $K(B) \le n$ where $K(B)$ is the number of elements of set $\{(i,j) ; b_{ij} =j\}$.

1972 Spain Mathematical Olympiad, 8

We know that $R^3 = \{(x_1, x_2, x_3) | x_i \in R, i = 1, 2, 3\}$ is a vector space regarding the laws of composition $(x_1, x_2, x_3) + (y_1, y_2, y_3) = (x_1 + y_1, x_2 + y_2, x_3 + y_3)$, $\lambda (x_1, x_2, x_3) = (\lambda x_1, \lambda x_2, \lambda x_3)$, $\lambda \in R$. We consider the following subset of $R^3$ : $L =\{(x_1, x2, x_3) \in R^3 | x_1 + x_2 + x_3 = 0\}$. a) Prove that $L$ is a vector subspace of $R^3$ . b) In $R^3$ the following relation is defined $\overline{x} R \overline{y} \Leftrightarrow \overline{x} -\overline{y} \in L, \overline{x} , \overline{y} \in R^3$. Prove that it is an equivalence relation. c) Find two vectors of $R^3$ that belong to the same class as the vector $(-1, 3, 2)$.