This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 68

2000 District Olympiad (Hunedoara), 3

Let $ \alpha $ be a plane and let $ ABC $ be an equilateral triangle situated on a parallel plane whose distance from $ \alpha $ is $ h. $ Find the locus of the points $ M\in\alpha $ for which $$ \left|MA\right| ^2 +h^2 = \left|MB\right|^2 +\left|MC\right|^2. $$

1992 IMO, 1

In the plane let $\,C\,$ be a circle, $\,L\,$ a line tangent to the circle $\,C,\,$ and $\,M\,$ a point on $\,L$. Find the locus of all points $\,P\,$ with the following property: there exists two points $\,Q,R\,$ on $\,L\,$ such that $\,M\,$ is the midpoint of $\,QR\,$ and $\,C\,$ is the inscribed circle of triangle $\,PQR$.

1960 IMO Shortlist, 7

An isosceles trapezoid with bases $a$ and $c$ and altitude $h$ is given. a) On the axis of symmetry of this trapezoid, find all points $P$ such that both legs of the trapezoid subtend right angles at $P$; b) Calculate the distance of $p$ from either base; c) Determine under what conditions such points $P$ actually exist. Discuss various cases that might arise.

1966 IMO Shortlist, 55

Given the vertex $A$ and the centroid $M$ of a triangle $ABC$, find the locus of vertices $B$ such that all the angles of the triangle lie in the interval $[40^\circ, 70^\circ].$

1966 IMO Longlists, 55

Given the vertex $A$ and the centroid $M$ of a triangle $ABC$, find the locus of vertices $B$ such that all the angles of the triangle lie in the interval $[40^\circ, 70^\circ].$

1963 IMO Shortlist, 2

Point $A$ and segment $BC$ are given. Determine the locus of points in space which are vertices of right angles with one side passing through $A$, and the other side intersecting segment $BC$.

1960 IMO Shortlist, 5

Consider the cube $ABCDA'B'C'D'$ (with face $ABCD$ directly above face $A'B'C'D'$). a) Find the locus of the midpoints of the segments $XY$, where $X$ is any point of $AC$ and $Y$ is any piont of $B'D'$; b) Find the locus of points $Z$ which lie on the segment $XY$ of part a) with $ZY=2XZ$.

1961 IMO, 6

Consider a plane $\epsilon$ and three non-collinear points $A,B,C$ on the same side of $\epsilon$; suppose the plane determined by these three points is not parallel to $\epsilon$. In plane $\epsilon$ take three arbitrary points $A',B',C'$. Let $L,M,N$ be the midpoints of segments $AA', BB', CC'$; Let $G$ be the centroid of the triangle $LMN$. (We will not consider positions of the points $A', B', C'$ such that the points $L,M,N$ do not form a triangle.) What is the locus of point $G$ as $A', B', C'$ range independently over the plane $\epsilon$?

2011 IMAR Test, 1

Let $A_0A_1A_2$ be a triangle and let $P$ be a point in the plane, not situated on the circle $A_0A_1A_2$. The line $PA_k$ meets again the circle $A_0A_1A_2$ at point $B_k, k = 0, 1, 2$. A line $\ell$ through the point $P$ meets the line $A_{k+1}A_{k+2}$ at point $C_k, k = 0, 1, 2$. Show that the lines $B_kC_k, k = 0, 1, 2$, are concurrent and determine the locus of their concurrency point as the line $\ell$ turns about the point $P$.

1986 IMO, 1

Let $A,B$ be adjacent vertices of a regular $n$-gon ($n\ge5$) with center $O$. A triangle $XYZ$, which is congruent to and initially coincides with $OAB$, moves in the plane in such a way that $Y$ and $Z$ each trace out the whole boundary of the polygon, with $X$ remaining inside the polygon. Find the locus of $X$.

1969 IMO Longlists, 39

$(HUN 6)$ Find the positions of three points $A,B,C$ on the boundary of a unit cube such that $min\{AB,AC,BC\}$ is the greatest possible.

1960 IMO, 7

An isosceles trapezoid with bases $a$ and $c$ and altitude $h$ is given. a) On the axis of symmetry of this trapezoid, find all points $P$ such that both legs of the trapezoid subtend right angles at $P$; b) Calculate the distance of $p$ from either base; c) Determine under what conditions such points $P$ actually exist. Discuss various cases that might arise.

1973 IMO Shortlist, 1

Let a tetrahedron $ABCD$ be inscribed in a sphere $S$. Find the locus of points $P$ inside the sphere $S$ for which the equality \[\frac{AP}{PA_1}+\frac{BP}{PB_1}+\frac{CP}{PC_1}+\frac{DP}{PD_1}=4\] holds, where $A_1,B_1, C_1$, and $D_1$ are the intersection points of $S$ with the lines $AP,BP,CP$, and $DP$, respectively.

1969 IMO Longlists, 12

$(CZS 1)$ Given a unit cube, find the locus of the centroids of all tetrahedra whose vertices lie on the sides of the cube.

2004 Germany Team Selection Test, 2

Let $d$ be a diameter of a circle $k$, and let $A$ be an arbitrary point on this diameter $d$ in the interior of $k$. Further, let $P$ be a point in the exterior of $k$. The circle with diameter $PA$ meets the circle $k$ at the points $M$ and $N$. Find all points $B$ on the diameter $d$ in the interior of $k$ such that \[\measuredangle MPA = \measuredangle BPN \quad \text{and} \quad PA \leq PB.\] (i. e. give an explicit description of these points without using the points $M$ and $N$).

1960 IMO, 5

Consider the cube $ABCDA'B'C'D'$ (with face $ABCD$ directly above face $A'B'C'D'$). a) Find the locus of the midpoints of the segments $XY$, where $X$ is any point of $AC$ and $Y$ is any piont of $B'D'$; b) Find the locus of points $Z$ which lie on the segment $XY$ of part a) with $ZY=2XZ$.

1966 IMO Shortlist, 28

In the plane, consider a circle with center $S$ and radius $1.$ Let $ABC$ be an arbitrary triangle having this circle as its incircle, and assume that $SA\leq SB\leq SC.$ Find the locus of [b]a.)[/b] all vertices $A$ of such triangles; [b]b.)[/b] all vertices $B$ of such triangles; [b]c.)[/b] all vertices $C$ of such triangles.

2007 Sharygin Geometry Olympiad, 3

Given two circles intersecting at points $P$ and $Q$. Let C be an arbitrary point distinct from $P$ and $Q$ on the former circle. Let lines $CP$ and $CQ$ intersect again the latter circle at points A and B, respectively. Determine the locus of the circumcenters of triangles $ABC$.