This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 913

2011 Iran MO (3rd Round), 3

Suppose that $p(n)$ is the number of partitions of a natural number $n$. Prove that there exists $c>0$ such that $P(n)\ge n^{c \cdot \log n}$. [i]proposed by Mohammad Mansouri[/i]

1964 AMC 12/AHSME, 21

If $\log_{b^2}x+\log_{x^2}b=1, b>0, b \neq 1, x \neq 1$, then $x$ equals: $ \textbf{(A)}\ 1/b^2 \qquad\textbf{(B)}\ 1/b \qquad\textbf{(C)}\ b^2 \qquad\textbf{(D)}\ b \qquad\textbf{(E)}\ \sqrt{b} $

2007 Today's Calculation Of Integral, 219

Let $ f(x)\equal{}\left(1\plus{}\frac{1}{x}\right)^{x}\ (x>0)$. Find $ \lim_{n\to\infty}\left\{f\left(\frac{1}{n}\right)f\left(\frac{2}{n}\right)f\left(\frac{3}{n}\right)\cdots\cdots f\left(\frac{n}{n}\right)\right\}^{\frac{1}{n}}$.

2005 Iran MO (3rd Round), 3

For each $m\in \mathbb N$ we define $rad\ (m)=\prod p_i$, where $m=\prod p_i^{\alpha_i}$. [b]abc Conjecture[/b] Suppose $\epsilon >0$ is an arbitrary number, then there exist $K$ depinding on $\epsilon$ that for each 3 numbers $a,b,c\in\mathbb Z$ that $gcd (a,b)=1$ and $a+b=c$ then: \[ max\{|a|,|b|,|c|\}\leq K(rad\ (abc))^{1+\epsilon} \] Now prove each of the following statements by using the $abc$ conjecture : a) Fermat's last theorem for $n>N$ where $N$ is some natural number. b) We call $n=\prod p_i^{\alpha_i}$ strong if and only $\alpha_i\geq 2$. c) Prove that there are finitely many $n$ such that $n,\ n+1,\ n+2$ are strong. d) Prove that there are finitely many rational numbers $\frac pq$ such that: \[ \Big| \sqrt[3]{2}-\frac pq \Big|<\frac{2^ {1384}}{q^3} \]

2009 All-Russian Olympiad, 5

Prove that \[ \log_ab\plus{}\log_bc\plus{}\log_ca\le \log_ba\plus{}\log_cb\plus{}\log_ac\] for all $ 1<a\le b\le c$.

1996 AIME Problems, 2

For each real number $x,$ let $\lfloor x\rfloor$ denote the greatest integer that does not exceed $x.$ For how many positive integers $n$ is it true that $n<1000$ and that $\lfloor \log_2 n\rfloor$ is a positive even integer.

1951 AMC 12/AHSME, 22

The values of $ a$ in the equation: $ \log_{10}(a^2 \minus{} 15a) \equal{} 2$ are: $ \textbf{(A)}\ \frac {15\pm\sqrt {233}}{2} \qquad\textbf{(B)}\ 20, \minus{} 5 \qquad\textbf{(C)}\ \frac {15 \pm \sqrt {305}}{2}$ $ \textbf{(D)}\ \pm20 \qquad\textbf{(E)}\ \text{none of these}$

Today's calculation of integrals, 860

For a function $f(x)\ (x\geq 1)$ satisfying $f(x)=(\log_e x)^2-\int_1^e \frac{f(t)}{t}dt$, answer the questions as below. (a) Find $f(x)$ and the $y$-coordinate of the inflection point of the curve $y=f(x)$. (b) Find the area of the figure bounded by the tangent line of $y=f(x)$ at the point $(e,\ f(e))$, the curve $y=f(x)$ and the line $x=1$.

2011 Postal Coaching, 5

Let $<a_n>$ be a sequence of non-negative real numbers such that $a_{m+n} \le a_m +a_n$ for all $m,n \in \mathbb{N}$. Prove that \[\sum_{k=1}^{N} \frac{a_k}{k^2}\ge \frac{a_N}{4N}\ln N\] for any $N \in \mathbb{N}$, where $\ln$ denotes the natural logarithm.

2013 Moldova Team Selection Test, 4

Tags: logarithm , limit , algebra
Consider a positive real number $a$ and a positive integer $m$. The sequence $(x_k)_{k\in \mathbb{Z}^{+}}$ is defined as: $x_1=1$, $x_2=a$, $x_{n+2}=\sqrt[m+1]{x_{n+1}^mx_n}$. $a)$ Prove that the sequence is converging. $b)$ Find $\lim_{n\rightarrow \infty}{x_n}$.

2005 Today's Calculation Of Integral, 81

Prove the following inequality. \[\frac{1}{12}(\pi -6+2\sqrt{3})\leq \int_{\frac{\pi}{6}}^{\frac{\pi}{4}} \ln (1+\cos 2x) dx\leq \frac{1}{4}(2-\sqrt{3})\]

1989 AMC 12/AHSME, 11

Hi guys, I was just reading over old posts that I made last year ( :P ) and saw how much the level of Getting Started became harder. To encourage more people from posting, I decided to start a Problem of the Day. This is how I'll conduct this: 1. In each post (not including this one since it has rules, etc) everyday, I'll post the problem. I may post another thread after it to give hints though. 2. Level of problem.. This is VERY important. All problems in this thread will be all AHSME or problems similar to this level. No AIME. Some AHSME problems, however, that involve tough insight or skills will not be posted. The chosen problems will be usually ones that everyone can solve after working. Calculators are allowed when you solve problems but it is NOT necessary. 3. Response.. All you have to do is simply solve the problem and post the solution. There is no credit given or taken away if you get the problem wrong. This isn't like other threads where the number of problems you get right or not matters. As for posting, post your solutions here in this thread. Do NOT PM me. Also, here are some more restrictions when posting solutions: A. No single answer post. It doesn't matter if you put hide and say "Answer is ###..." If you don't put explanation, it simply means you cheated off from some other people. I've seen several posts that went like "I know the answer" and simply post the letter. What is the purpose of even posting then? Huh? B. Do NOT go back to the previous problem(s). This causes too much confusion. C. You're FREE to give hints and post different idea, way or answer in some cases in problems. If you see someone did wrong or you don't understand what they did, post here. That's what this thread is for. 4. Main purpose.. This is for anyone who visits this forum to enjoy math. I rememeber when I first came into this forum, I was poor at math compared to other people. But I kindly got help from many people such as JBL, joml88, tokenadult, and many other people that would take too much time to type. Perhaps without them, I wouldn't be even a moderator in this forum now. This site clearly made me to enjoy math more and more and I'd like to do the same thing. That's about the rule.. Have fun problem solving! Next post will contain the Day 1 Problem. You can post the solutions until I post one. :D

2007 Moldova National Olympiad, 12.7

Find the limit \[\lim_{n\to \infty}\frac{\sqrt[n+1]{(2n+3)(2n+4)\ldots (3n+3)}}{n+1}\]

2003 Moldova National Olympiad, 10.8

Tags: logarithm , algebra
Find all integers n for which number $ \log_{2n\minus{}1}(n^2\plus{}2)$ is rational.

1992 Brazil National Olympiad, 2

Show that there is a positive integer n such that the first 1992 digits of $n^{1992}$ are 1.

2016 Tournament Of Towns, 1

Tags: algebra , logarithm
On a blackboard the product $log_{( )}[ ]\times\dots\times log_{( )}[ ]$ is written (there are 50 logarithms in the product). Donald has $100$ cards: $[2], [3],\dots, [51]$ and $(52),\dots,(101)$. He is replacing each $()$ with some card of form $(x)$ and each $[]$ with some card of form $[y]$. Find the difference between largest and smallest values Donald can achieve.

1949-56 Chisinau City MO, 40

Solve the system of equations: $$\begin{cases} \log_{2} x + \log_{4} y + \log_{4} z =2 \\ \log_{3} y + \log_{9} z + \log_{9} x =2 \\ \log_{4} z + \log_{16} x + \log_{16} y =2\end{cases}$$

2012 Today's Calculation Of Integral, 799

Let $n$ be positive integer. Define a sequence $\{a_k\}$ by \[a_1=\frac{1}{n(n+1)},\ a_{k+1}=-\frac{1}{k+n+1}+\frac{n}{k}\sum_{i=1}^k a_i\ \ (k=1,\ 2,\ 3,\ \cdots).\] (1) Find $a_2$ and $a_3$. (2) Find the general term $a_k$. (3) Let $b_n=\sum_{k=1}^n \sqrt{a_k}$. Prove that $\lim_{n\to\infty} b_n=\ln 2$. 50 points

1983 AIME Problems, 1

Let $x$, $y$, and $z$ all exceed 1 and let $w$ be a positive number such that \[\log_x w = 24,\quad \log_y w = 40 \quad\text{and}\quad \log_{xyz} w = 12.\] Find $\log_z w$.

2010 Today's Calculation Of Integral, 573

Find the area of the figure bounded by three curves $ C_1: y\equal{}\sin x\ \left(0\leq x<\frac {\pi}{2}\right)$ $ C_2: y\equal{}\cos x\ \left(0\leq x<\frac {\pi}{2}\right)$ $ C_3: y\equal{}\tan x\ \left(0\leq x<\frac {\pi}{2}\right)$.

1975 AMC 12/AHSME, 19

Tags: logarithm
Which positive numbers $ x$ satisfy the equation $ (\log_3x)(\log_x5)\equal{}\log_35$? $ \textbf{(A)}\ 3 \text{ and } 5 \text{ only} \qquad \textbf{(B)}\ 3, 5, \text{ and } 15 \text{ only} \qquad$ $ \textbf{(C)}\ \text{only numbers of the form } 5^n \cdot 3^m, \text{ where } n \text{ and } m \text{ are }$ $ \text{positive integers} \qquad$ $ \textbf{(D)}\ \text{all positive } x \neq 1 \qquad \textbf{(E)}\ \text{none of these}$

2004 Baltic Way, 8

Let $f\left(x\right)$ be a non-constant polynomial with integer coefficients, and let $u$ be an arbitrary positive integer. Prove that there is an integer $n$ such that $f\left(n\right)$ has at least $u$ distinct prime factors and $f\left(n\right) \neq 0$.

2010 Today's Calculation Of Integral, 576

For a function $ f(x)\equal{}(\ln x)^2\plus{}2\ln x$, let $ C$ be the curve $ y\equal{}f(x)$. Denote $ A(a,\ f(a)),\ B(b,\ f(b))\ (a<b)$ the points of tangency of two tangents drawn from the origin $ O$ to $ C$ and the curve $ C$. Answer the following questions. (1) Examine the increase and decrease, extremal value and inflection point , then draw the approximate garph of the curve $ C$. (2) Find the values of $ a,\ b$. (3) Find the volume by a rotation of the figure bounded by the part from the point $ A$ to the point $ B$ and line segments $ OA,\ OB$ around the $ y$-axis.

2008 ITest, 58

Tags: logarithm
Finished with rereading Isaac Asimov's $\textit{Foundation}$ series, Joshua asks his father, "Do you think somebody will build small devices that run on nuclear energy while I'm alive?" "Honestly, Josh, I don't know. There are a lot of very different engineering problems involved in designing such devices. But technology moves forward at an amazing pace, so I won't tell you we can't get there in time for you to see it. I $\textit{did}$ go to a graduate school with a lady who now works on $\textit{portable}$ nuclear reactors. They're not small exactly, but they aren't nearly as large as most reactors. That might be the first step toward a nuclear-powered pocket-sized video game. Hannah adds, "There are already companies designing batteries that are nuclear in the sense that they release energy from uranium hydride through controlled exoenergetic processes. This process is not the same as the nuclear fission going on in today's reactors, but we can certainly call it $\textit{nuclear energy}$." "Cool!" Joshua's interest is piqued. Hannah continues, "Suppose that right now in the year $2008$ we can make one of these nuclear batteries in a battery shape that is $2$ meters $\textit{across}$. Let's say you need that size to be reduced to $2$ centimeters $\textit{across}$, in the same proportions, in order to use it to run your little video game machine. If every year we reduce the necessary volume of such a battery by $1/3$, in what year will the batteries first get small enough?" Joshua asks, "The battery shapes never change? Each year the new batteries are similar in shape - in all dimensions - to the bateries from previous years?" "That's correct," confirms Joshua's mother. "Also, the base $10$ logarithm of $5$ is about $0.69897$ and the base $10$ logarithm of $3$ is around $0.47712$." This makes Joshua blink. He's not sure he knows how to use logarithms, but he does think he can compute the answer. He correctly notes that after $13$ years, the batteries will already be barely more than a sixth of their original width. Assuming Hannah's prediction of volume reduction is correct and effects are compounded continuously, compute the first year that the nuclear batteries get small enough for pocket video game machines. Assume also that the year $2008$ is $7/10$ complete.

2012 Today's Calculation Of Integral, 784

Define for positive integer $n$, a function $f_n(x)=\frac{\ln x}{x^n}\ (x>0).$ In the coordinate plane, denote by $S_n$ the area of the figure enclosed by $y=f_n(x)\ (x\leq t)$, the $x$-axis and the line $x=t$ and denote by $T_n$ the area of the rectagle with four vertices $(1,\ 0),\ (t,\ 0),\ (t,\ f_n(t))$ and $(1,\ f_n(t))$. (1) Find the local maximum $f_n(x)$. (2) When $t$ moves in the range of $t>1$, find the value of $t$ for which $T_n(t)-S_n(t)$ is maximized. (3) Find $S_1(t)$ and $S_n(t)\ (n\geq 2)$. (4) For each $n\geq 2$, prove that there exists the only $t>1$ such that $T_n(t)=S_n(t)$. Note that you may use $\lim_{x\to\infty} \frac{\ln x}{x}=0.$