This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 913

1973 Miklós Schweitzer, 5

Verify that for every $ x > 0$, \[ \frac{\Gamma'(x\plus{}1)}{\Gamma (x\plus{}1)} > \log x.\] [i]P. Medgyessy[/i]

1955 AMC 12/AHSME, 17

Tags: logarithm
If $ \log x\minus{}5 \log 3\equal{}\minus{}2$, then $ x$ equals: $ \textbf{(A)}\ 1.25 \qquad \textbf{(B)}\ 0.81 \qquad \textbf{(C)}\ 2.43 \qquad \textbf{(D)}\ 0.8 \qquad \textbf{(E)}\ \text{either 0.8 or 1.25}$

2012 Today's Calculation Of Integral, 846

For $a>0$, let $f(a)=\lim_{t\rightarrow +0} \int_{t}^{1} |ax+x\ln x|\ dx.$ Let $a$ vary in the range $0 <a< +\infty$, find the minimum value of $f(a)$.

2023 CCA Math Bonanza, L3.3

Tags: logarithm
Given that $\log_{10}(4) = 0.6021$ to the nearest ten-thousandth, find $\log_{10}(5)$ to the nearest thousandth. [i]Lightning 3.3[/i]

1950 Miklós Schweitzer, 7

Examine the behavior of the expression $ \sum_{\nu\equal{}1}^{n\minus{}1}\frac{\log(n\minus{}\nu)}{\nu}\minus{}\log^2 n$ as $ n\rightarrow \infty$

2010 Contests, 2

Compute the sum of the series $\sum_{k=0}^{\infty} \frac{1}{(4k+1)(4k+2)(4k+3)(4k+4)} = \frac{1}{1\cdot2\cdot3\cdot4} + \frac{1}{5\cdot6\cdot7\cdot8} + ...$

2003 Brazil National Olympiad, 2

Let $S$ be a set with $n$ elements. Take a positive integer $k$. Let $A_1, A_2, \ldots, A_k$ be any distinct subsets of $S$. For each $i$ take $B_i = A_i$ or $B_i = S - A_i$. Find the smallest $k$ such that we can always choose $B_i$ so that $\bigcup_{i=1}^k B_i = S$, no matter what the subsets $A_i$ are.

2009 Putnam, B1

Show that every positive rational number can be written as a quotient of products of factorials of (not necessarily distinct) primes. For example, $ \frac{10}9\equal{}\frac{2!\cdot 5!}{3!\cdot 3!\cdot 3!}.$

1976 Miklós Schweitzer, 3

Let $ H$ denote the set of those natural numbers for which $ \tau(n)$ divides $ n$, where $ \tau(n)$ is the number of divisors of $ n$. Show that a) $ n! \in H$ for all sufficiently large $ n$, b)$ H$ has density $ 0$. [i]P. Erdos[/i]

2009 Today's Calculation Of Integral, 408

Evaluate $ \int_1^e \{(1 \plus{} x)e^x \plus{} (1 \minus{} x)e^{ \minus{} x}\}\ln x\ dx$.

1978 IMO Longlists, 33

A sequence $(a_n)^{\infty}_0$ of real numbers is called [i]convex[/i] if $2a_n\le a_{n-1}+a_{n+1}$ for all positive integers $n$. Let $(b_n)^{\infty}_0$ be a sequence of positive numbers and assume that the sequence $(\alpha^nb_n)^{\infty}_0$ is convex for any choice of $\alpha > 0$. Prove that the sequence $(\log b_n)^{\infty}_0$ is convex.

2017 District Olympiad, 2

Solve in $ \mathbb{Z} $ the system: $$ \left\{ \begin{matrix} 2^x+\log_3 x=y^2 \\ 2^y+\log_3 y=x^2 \end{matrix} \right. . $$

2012 Pre - Vietnam Mathematical Olympiad, 1

For $a,b,c>0: \; abc=1$ prove that \[a^3+b^3+c^3+6 \ge (a+b+c)^2\]

2000 Baltic Way, 20

For every positive integer $n$, let \[x_n=\frac{(2n+1)(2n+3)\cdots (4n-1)(4n+1)}{(2n)(2n+2)\cdots (4n-2)(4n)}\] Prove that $\frac{1}{4n}<x_n-\sqrt{2}<\frac{2}{n}$.

2023 India IMO Training Camp, 2

For a positive integer $k$, let $s(k)$ denote the sum of the digits of $k$. Show that there are infinitely many natural numbers $n$ such that $s(2^n) > s(2^{n+1})$.

2005 Today's Calculation Of Integral, 90

Find $\lim_{n\to\infty} \left(\frac{_{3n}C_n}{_{2n}C_n}\right)^{\frac{1}{n}}$ where $_iC_j$ is a binominal coefficient which means $\frac{i\cdot (i-1)\cdots(i-j+1)}{j\cdot (j-1)\cdots 2\cdot 1}$.

2019 Purple Comet Problems, 9

Tags: algebra , logarithm
Find the positive integer $n$ such that $32$ is the product of the real number solutions of $x^{\log_2(x^3)-n} = 13$

1950 AMC 12/AHSME, 37

Tags: logarithm
If $ y \equal{} \log_{a}{x}$, $ a > 1$, which of the following statements is incorrect? $\textbf{(A)}\ \text{If }x=1,y=0 \qquad\\ \textbf{(B)}\ \text{If }x=a,y=1 \qquad\\ \textbf{(C)}\ \text{If }x=-1,y\text{ is imaginary (complex)} \qquad\\ \textbf{(D)}\ \text{If }0<x<z,y\text{ is always less than 0 and decreases without limit as }x\text{ approaches zero} \qquad\\ \textbf{(E)}\ \text{Only some of the above statements are correct}$

2000 AIME Problems, 9

The system of equations \begin{eqnarray*}\log_{10}(2000xy) - (\log_{10}x)(\log_{10}y) & = & 4 \\ \log_{10}(2yz) - (\log_{10}y)(\log_{10}z) & = & 1 \\ \log_{10}(zx) - (\log_{10}z)(\log_{10}x) & = & 0 \\ \end{eqnarray*} has two solutions $ (x_{1},y_{1},z_{1})$ and $ (x_{2},y_{2},z_{2}).$ Find $ y_{1} + y_{2}.$

1969 AMC 12/AHSME, 17

Tags: logarithm
The equation $2^{2x}-8\cdot 2^x+12=0$ is satisfied by: $\textbf{(A) }\log3\qquad \textbf{(B) }\tfrac12\log6\qquad \textbf{(C) }1+\log\tfrac34\qquad$ $\textbf{(D) }1+\tfrac{\log3}{\log2}\qquad \textbf{(E) }\text{none of these}$

1995 AMC 12/AHSME, 12

Hi guys, I was just reading over old posts that I made last year ( :P ) and saw how much the level of Getting Started became harder. To encourage more people from posting, I decided to start a Problem of the Day. This is how I'll conduct this: 1. In each post (not including this one since it has rules, etc) everyday, I'll post the problem. I may post another thread after it to give hints though. 2. Level of problem.. This is VERY important. All problems in this thread will be all AHSME or problems similar to this level. No AIME. Some AHSME problems, however, that involve tough insight or skills will not be posted. The chosen problems will be usually ones that everyone can solve after working. Calculators are allowed when you solve problems but it is NOT necessary. 3. Response.. All you have to do is simply solve the problem and post the solution. There is no credit given or taken away if you get the problem wrong. This isn't like other threads where the number of problems you get right or not matters. As for posting, post your solutions here in this thread. Do NOT PM me. Also, here are some more restrictions when posting solutions: A. No single answer post. It doesn't matter if you put hide and say "Answer is ###..." If you don't put explanation, it simply means you cheated off from some other people. I've seen several posts that went like "I know the answer" and simply post the letter. What is the purpose of even posting then? Huh? B. Do NOT go back to the previous problem(s). This causes too much confusion. C. You're FREE to give hints and post different idea, way or answer in some cases in problems. If you see someone did wrong or you don't understand what they did, post here. That's what this thread is for. 4. Main purpose.. This is for anyone who visits this forum to enjoy math. I rememeber when I first came into this forum, I was poor at math compared to other people. But I kindly got help from many people such as JBL, joml88, tokenadult, and many other people that would take too much time to type. Perhaps without them, I wouldn't be even a moderator in this forum now. This site clearly made me to enjoy math more and more and I'd like to do the same thing. That's about the rule.. Have fun problem solving! Next post will contain the Day 1 Problem. You can post the solutions until I post one. :D

2017 Moscow Mathematical Olympiad, 8

Tags: algebra , logarithm
Are there such $x,y$ that $\lg{(x+y)}=\lg x \lg y$ and $\lg{(x-y)}=\frac{\lg x}{\lg y}$ ?

1993 National High School Mathematics League, 11

Tags: logarithm
Four real numbers $x_0>x_1>x_2>x_3>0$, if $\log_{\frac{x_0}{x_1}}1993+\log_{\frac{x_1}{x_2}}1993+\log_{\frac{x_2}{x_3}}1993\geq k\cdot\log_{\frac{x_0}{x_3}}1993$ for all $x_0,x_1,x_2,x_3$, then the maximum value of $k$ is________.

2009 Today's Calculation Of Integral, 451

Find $ \lim_{n\to\infty} \sum_{k\equal{}1}^n \ln \left(1\plus{}\frac{k^a}{n^{a\plus{}1}}\right).$

2004 South East Mathematical Olympiad, 3

(1) Determine if there exists an infinite sequence $\{a_n\}$ with positive integer terms, such that $a^2_{n+1}\ge 2a_na_{n+2}$ for any positive integer $n$. (2) Determine if there exists an infinite sequence $\{a_n\}$ with positive irrational terms, such that $a^2_{n+1}\ge 2a_na_{n+2}$ for any positive integer $n$.