This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 913

1957 AMC 12/AHSME, 28

Tags: logarithm
If $ a$ and $ b$ are positive and $ a\not\equal{} 1,\,b\not\equal{} 1$, then the value of $ b^{\log_b{a}}$ is: $ \textbf{(A)}\ \text{dependent upon }{b} \qquad \textbf{(B)}\ \text{dependent upon }{a}\qquad \textbf{(C)}\ \text{dependent upon }{a}\text{ and }{b}\qquad \textbf{(D)}\ \text{zero}\qquad \textbf{(E)}\ \text{one}$

2005 Today's Calculation Of Integral, 62

For $a>1$, let $f(a)=\frac{1}{2}\int_0^1 |ax^n-1|dx+\frac{1}{2}\ (n=1,2,\cdots)$ and let $b_n$ be the minimum value of $f(a)$ at $a>1$. Evaluate \[\lim_{m\to\infty} b_m\cdot b_{m+1}\cdot \cdots\cdots b_{2m}\ (m=1,2,3,\cdots)\]

2007 Today's Calculation Of Integral, 217

Evaluate $ \int_{0}^{1}e^{\sqrt{e^{x}}}\ dx\plus{}2\int_{e}^{e^{\sqrt{e}}}\ln (\ln x)\ dx$.

2013 ELMO Shortlist, 2

Let $n$ be a fixed positive integer. Initially, $n$ 1's are written on a blackboard. Every minute, David picks two numbers $x$ and $y$ written on the blackboard, erases them, and writes the number $(x+y)^4$ on the blackboard. Show that after $n-1$ minutes, the number written on the blackboard is at least $2^{\frac{4n^2-4}{3}}$. [i]Proposed by Calvin Deng[/i]

2000 Stanford Mathematics Tournament, 15

Tags: logarithm
Which is greater: $ (3^5)^{(5^3)}$ or $ (5^3)^{(3^5)}$?

1975 AMC 12/AHSME, 18

A positive integer $ N$ with three digits in its base ten representation is chosen at random, with each three digit number having an equal chance of being chosen. The probability that $ \log_2 N$ is an integer is $ \textbf{(A)}\ 0 \qquad \textbf{(B)}\ 3/899 \qquad \textbf{(C)}\ 1/225 \qquad \textbf{(D)}\ 1/300 \qquad \textbf{(E)}\ 1/450$

1998 AMC 12/AHSME, 12

How many different prime numbers are factors of $ N$ if \[ \log_2 (\log_3 (\log_5 (\log_7 N))) \equal{} 11? \]$ \textbf{(A)}\ 1 \qquad \textbf{(B)}\ 2 \qquad \textbf{(C)}\ 3 \qquad \textbf{(D)}\ 4 \qquad \textbf{(E)}\ 7$

2005 Putnam, A5

Evaluate $\int_0^1\frac{\ln(x+1)}{x^2+1}\,dx.$

1957 Putnam, A6

Tags: limit , logarithm
Let $a>0$, $S_1 =\ln a$ and $S_n = \sum_{i=1 }^{n-1} \ln( a- S_i )$ for $n >1.$ Show that $$ \lim_{n \to \infty} S_n = a-1.$$

2002 AIME Problems, 6

The solutions to the system of equations \begin{eqnarray*} \log_{225}{x}+\log_{64}{y} &=& 4\\ \log_x{225}-\log_y{64} &=& 1 \end{eqnarray*} are $(x_1,y_1)$ and $(x_2, y_2).$ Find $\log_{30}{(x_1y_1x_2y_2)}.$

2013 Today's Calculation Of Integral, 871

Define sequences $\{a_n\},\ \{b_n\}$ by \[a_n=\int_{-\frac {\pi}6}^{\frac{\pi}6} e^{n\sin \theta}d\theta,\ b_n=\int_{-\frac {\pi}6}^{\frac{\pi}6} e^{n\sin \theta}\cos \theta d\theta\ (n=1,\ 2,\ 3,\ \cdots).\] (1) Find $b_n$. (2) Prove that for each $n$, $b_n\leq a_n\leq \frac 2{\sqrt{3}}b_n.$ (3) Find $\lim_{n\to\infty} \frac 1{n}\ln (na_n).$

1972 AMC 12/AHSME, 6

Tags: logarithm
If $3^{2x}+9=10(3^{x})$, then the value of $(x^2+1)$ is $\textbf{(A) }1\text{ only}\qquad\textbf{(B) }5\text{ only}\qquad\textbf{(C) }1\text{ or }5\qquad\textbf{(D) }2\qquad \textbf{(E) }10$

1983 Canada National Olympiad, 2

For each $r\in\mathbb{R}$ let $T_r$ be the transformation of the plane that takes the point $(x, y)$ into the point $(2^r x; r2^r x+2^r y)$. Let $F$ be the family of all such transformations (i.e. $F = \{T_r : r\in\mathbb{R}\}$). Find all curves $y = f(x)$ whose graphs remain unchanged by every transformation in $F$.

2011 Today's Calculation Of Integral, 728

Evaluate \[\int_{\frac {\pi}{12}}^{\frac{\pi}{6}} \frac{\sin x-\cos x-x(\sin x+\cos x)+1}{x^2-x(\sin x+\cos x)+\sin x\cos x}\ dx.\]

1997 Taiwan National Olympiad, 9

For $n\geq k\geq 3$, let $X=\{1,2,...,n\}$ and let $F_{k}$ a the family of $k$-element subsets of $X$, any two of which have at most $k-2$ elements in common. Show that there exists a subset $M_{k}$ of $X$ with at least $[\log_{2}{n}]+1$ elements containing no subset in $F_{k}$.

2005 Iran MO (3rd Round), 3

$f(n)$ is the least number that there exist a $f(n)-$mino that contains every $n-$mino. Prove that $10000\leq f(1384)\leq960000$. Find some bound for $f(n)$

2012 Online Math Open Problems, 28

Find the remainder when \[\sum_{k=1}^{2^{16}}\binom{2k}{k}(3\cdot 2^{14}+1)^k (k-1)^{2^{16}-1}\]is divided by $2^{16}+1$. ([i]Note:[/i] It is well-known that $2^{16}+1=65537$ is prime.) [i]Victor Wang.[/i]

2005 Today's Calculation Of Integral, 42

Let $0<t<\frac{\pi}{2}$. Evaluate \[\lim_{t\rightarrow \frac{\pi}{2}} \int_0^t \tan \theta \sqrt{\cos \theta}\ln (\cos \theta)d\theta\]

2008 Putnam, B2

Let $ F_0\equal{}\ln x.$ For $ n\ge 0$ and $ x>0,$ let $ \displaystyle F_{n\plus{}1}(x)\equal{}\int_0^xF_n(t)\,dt.$ Evaluate $ \displaystyle\lim_{n\to\infty}\frac{n!F_n(1)}{\ln n}.$

2012 Today's Calculation Of Integral, 820

Let $P_k$ be a point whose $x$-coordinate is $1+\frac{k}{n}\ (k=1,\ 2,\ \cdots,\ n)$ on the curve $y=\ln x$. For $A(1,\ 0)$, find the limit $\lim_{n\to\infty} \frac{1}{n}\sum_{k=1}^{n} \overline{AP_k}^2.$

2007 Today's Calculation Of Integral, 207

Evaluate the following definite integral. \[\int_{e^{e}}^{e^{e+1}}\left\{\frac{1}{\ln x \cdot\ln (\ln x)}+\ln (\ln (\ln x))\right\}dx\]

1974 Canada National Olympiad, 1

i) If $x = \left(1+\frac{1}{n}\right)^{n}$ and $y=\left(1+\frac{1}{n}\right)^{n+1}$, show that $y^{x}= x^{y}$. ii) Show that, for all positive integers $n$, \[1^{2}-2^{2}+3^{2}-4^{2}+\cdots+(-1)^{n}(n-1)^{2}+(-1)^{n+1}n^{2}= (-1)^{n+1}(1+2+\cdots+n).\]

1993 AMC 12/AHSME, 11

Tags: logarithm
If $\log_2(\log_2(\log_2(x)))=2$, then how many digits are in the base-ten representation for $x$? $ \textbf{(A)}\ 5 \qquad\textbf{(B)}\ 7 \qquad\textbf{(C)}\ 9 \qquad\textbf{(D)}\ 11 \qquad\textbf{(E)}\ 13 $

2007 Putnam, 4

A [i]repunit[/i] is a positive integer whose digits in base $ 10$ are all ones. Find all polynomials $ f$ with real coefficients such that if $ n$ is a repunit, then so is $ f(n).$

PEN E Problems, 25

Prove that $\ln n \geq k\ln 2$, where $n$ is a natural number and $k$ is the number of distinct primes that divide $n$.