This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 913

2009 AIME Problems, 7

The sequence $ (a_n)$ satisfies $ a_1 \equal{} 1$ and $ \displaystyle 5^{(a_{n\plus{}1}\minus{}a_n)} \minus{} 1 \equal{} \frac{1}{n\plus{}\frac{2}{3}}$ for $ n \geq 1$. Let $ k$ be the least integer greater than $ 1$ for which $ a_k$ is an integer. Find $ k$.

2012 Today's Calculation Of Integral, 792

Answer the following questions: (1) Let $a$ be positive real number. Find $\lim_{n\to\infty} (1+a^{n})^{\frac{1}{n}}.$ (2) Evaluate $\int_1^{\sqrt{3}} \frac{1}{x^2}\ln \sqrt{1+x^2}dx.$ 35 points

2005 Today's Calculation Of Integral, 16

Calculate the following indefinite integrals. [1] $\int \sin (\ln x)dx$ [2] $\int \frac{x+\sin ^ 2 x}{x\sin ^ 2 x}dx$ [3] $\int \frac{x^3}{x^2+1}dx$ [4] $\int \frac{x^2}{\sqrt{2x-1}}dx$ [5] $\int \frac{x+\cos 2x +1}{x\cos ^ 2 x}dx$

1998 Harvard-MIT Mathematics Tournament, 5

Evaluate $\displaystyle\lim_{x\to 1}x^{\dfrac{x}{\sin(1-x)}}$.

2013 Today's Calculation Of Integral, 860

For a function $f(x)\ (x\geq 1)$ satisfying $f(x)=(\log_e x)^2-\int_1^e \frac{f(t)}{t}dt$, answer the questions as below. (a) Find $f(x)$ and the $y$-coordinate of the inflection point of the curve $y=f(x)$. (b) Find the area of the figure bounded by the tangent line of $y=f(x)$ at the point $(e,\ f(e))$, the curve $y=f(x)$ and the line $x=1$.

2006 District Olympiad, 1

Let $ a,b,c\in (0,1)$ and $ x,y,z\in (0, \plus{} \infty)$ be six real numbers such that \[ a^x \equal{} bc , \quad b^y \equal{} ca , \quad c^z \equal{} ab .\] Prove that \[ \frac 1{2 \plus{} x} \plus{} \frac 1{2 \plus{} y} \plus{} \frac 1{2 \plus{} z} \leq \frac 34 .\] [i]Cezar Lupu[/i]

1976 AMC 12/AHSME, 20

Let $a,~b,$ and $x$ be positive real numbers distinct from one. Then \[4(\log_ax)^2+3(\log_bx)^2=8(\log_ax)(\log_bx)\] $\textbf{(A) }\text{for all values of }a,~b,\text{ and }x\qquad$ $\textbf{(B) }\text{if and only if }a=b^2\qquad$ $\textbf{(C) }\text{if and only if }b=a^2\qquad$ $\textbf{(D) }\text{if and only if }x=ab\qquad$ $ \textbf{(E) }\text{for none of these}$

2013 India National Olympiad, 6

Let $a,b,c,x,y,z$ be six positive real numbers satisfying $x+y+z=a+b+c$ and $xyz=abc.$ Further, suppose that $a\leq x<y<z\leq c$ and $a<b<c.$ Prove that $a=x,b=y$ and $c=z.$

1949-56 Chisinau City MO, 39

Tags: logarithm , algebra
Solve the equation: $\log_{x} 2 \cdot \log_{2x} 2 = \log_{4x} 2$.

2009 Today's Calculation Of Integral, 462

Evaluate $ \int_0^1 \frac{(1\minus{}x\plus{}x^2)\cos \ln (x\plus{}\sqrt{1\plus{}x^2})\minus{}\sqrt{1\plus{}x^2}\sin \ln (x\plus{}\sqrt{1\plus{}x^2})}{(1\plus{}x^2)^{\frac{3}{2}}}\ dx$.

2004 Putnam, B5

Evaluate $\lim_{x\to 1^-}\prod_{n=0}^{\infty}\left(\frac{1+x^{n+1}}{1+x^n}\right)^{x^n}$.

2005 Today's Calculation Of Integral, 38

Let $a$ be a constant number such that $0<a<1$ and $V(a)$ be the volume formed by the revolution of the figure which is enclosed by the curve $y=\ln (x-a)$, the $x$-axis and two lines $x=1,x=3$ about the $x$-axis. If $a$ varies in the range of $0<a<1$, find the minimum value of $V(a)$.

2011 Today's Calculation Of Integral, 712

Evaluate $\int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \left\{\frac{1}{\tan x\ (\ln \sin x)}+\frac{\tan x}{\ln \cos x}\right\}\ dx.$

2004 Nicolae Coculescu, 2

Solve in the real numbers the equation: $$ \cos^2 \frac{(x-2)\pi }{4} +\cos\frac{(x-2)\pi }{3} =\log_3 (x^2-4x+6) $$ [i]Gheorghe Mihai[/i]

1987 India National Olympiad, 1

Given $ m$ and $ n$ as relatively prime positive integers greater than one, show that \[ \frac{\log_{10} m}{\log_{10} n}\] is not a rational number.

2005 China Team Selection Test, 2

Tags: logarithm , algebra
Determine whether $\sqrt{1001^2+1}+\sqrt{1002^2+1}+ \cdots + \sqrt{2000^2+1}$ be a rational number or not?

2002 Baltic Way, 3

Find all sequences $0\le a_0\le a_1\le a_2\le \ldots$ of real numbers such that \[a_{m^2+n^2}=a_m^2+a_n^2 \] for all integers $m,n\ge 0$.

2014 Dutch BxMO/EGMO TST, 5

Let $n$ be a positive integer. Daniel and Merlijn are playing a game. Daniel has $k$ sheets of paper lying next to each other on a table, where $k$ is a positive integer. On each of the sheets, he writes some of the numbers from $1$ up to $n$ (he is allowed to write no number at all, or all numbers). On the back of each of the sheets, he writes down the remaining numbers. Once Daniel is finished, Merlijn can flip some of the sheets of paper (he is allowed to flip no sheet at all, or all sheets). If Merlijn succeeds in making all of the numbers from $1$ up to n visible at least once, then he wins. Determine the smallest $k$ for which Merlijn can always win, regardless of Daniel’s actions.

2005 Today's Calculation Of Integral, 13

Calculate the following integarls. [1] $\int x\cos ^ 2 x dx$ [2] $\int \frac{x-1}{(3x-1)^2}dx$ [3] $\int \frac{x^3}{(2-x^2)^4}dx$ [4] $\int \left({\frac{1}{4\sqrt{x}}+\frac{1}{2x}}\right)dx$ [5] $\int (\ln x)^2 dx$

2007 Today's Calculation Of Integral, 181

For real number $a,$ find the minimum value of $\int_{0}^{\frac{\pi}{2}}\left|\frac{\sin 2x}{1+\sin^{2}x}-a\cos x\right| dx.$

2009 AMC 12/AHSME, 24

The [i]tower function of twos[/i] is defined recursively as follows: $ T(1) \equal{} 2$ and $ T(n \plus{} 1) \equal{} 2^{T(n)}$ for $ n\ge1$. Let $ A \equal{} (T(2009))^{T(2009)}$ and $ B \equal{} (T(2009))^A$. What is the largest integer $ k$ such that \[ \underbrace{\log_2\log_2\log_2\ldots\log_2B}_{k\text{ times}} \]is defined? $ \textbf{(A)}\ 2009\qquad \textbf{(B)}\ 2010\qquad \textbf{(C)}\ 2011\qquad \textbf{(D)}\ 2012\qquad \textbf{(E)}\ 2013$

1986 India National Olympiad, 2

Tags: logarithm , algebra
Solve \[ \left\{ \begin{array}{l} \log_2 x\plus{}\log_4 y\plus{}\log_4 z\equal{}2 \\ \log_3 y\plus{}\log_9 z\plus{}\log_9 x\equal{}2 \\ \log_4 z\plus{}\log_{16} x\plus{}\log_{16} y\equal{}2 \\ \end{array} \right.\]

2009 Indonesia TST, 2

Find the value of real parameter $ a$ such that $ 2$ is the smallest integer solution of \[ \frac{x\plus{}\log_2 (2^x\minus{}3a)}{1\plus{}\log_2 a} >2.\]

2011 Math Prize For Girls Problems, 4

Tags: logarithm
If $x > 10$, what is the greatest possible value of the expression \[ {( \log x )}^{\log \log \log x} - {(\log \log x)}^{\log \log x} ? \] All the logarithms are base 10.

Today's calculation of integrals, 882

Find $\lim_{n\to\infty} \sum_{k=1}^n \frac{1}{n+k}(\ln (n+k)-\ln\ n)$.