Found problems: 638
2012 Grigore Moisil Intercounty, 1
The absolute value of the sum of the elements of a real orthogonal matrix is at most the order of the matrix.
MIPT Undergraduate Contest 2019, 1.3
Given a natural number $n$, for what maximal value $k$ it is possible to construct a matrix of size $k \times n$ consisting only of elements $\pm 1$ in such a way that for any interchange of a $+1$ with a $-1$ or vice versa, its rank is equal to $k$?
2008 AIME Problems, 9
A particle is located on the coordinate plane at $ (5,0)$. Define a [i]move[/i] for the particle as a counterclockwise rotation of $ \pi/4$ radians about the origin followed by a translation of $ 10$ units in the positive $ x$-direction. Given that the particle's position after $ 150$ moves is $ (p,q)$, find the greatest integer less than or equal to $ |p|\plus{}|q|$.
2013 AMC 10, 18
Let points $ A = (0,0) , \ B = (1,2), \ C = (3,3), $ and $ D = (4,0) $. Quadrilateral $ ABCD $ is cut into equal area pieces by a line passing through $ A $. This line intersects $ \overline{CD} $ at point $ \left (\frac{p}{q}, \frac{r}{s} \right ) $, where these fractions are in lowest terms. What is $ p + q + r + s $?
$ \textbf{(A)} \ 54 \qquad \textbf{(B)} \ 58 \qquad \textbf{(C)} \ 62 \qquad \textbf{(D)} \ 70 \qquad \textbf{(E)} \ 75 $
2012 Tuymaada Olympiad, 3
Prove that $N^2$ arbitrary distinct positive integers ($N>10$) can be arranged in a $N\times N$ table, so that all $2N$ sums in rows and columns are distinct.
[i]Proposed by S. Volchenkov[/i]
2002 IMC, 6
For an $n\times n$ matrix with real entries let $||M||=\sup_{x\in \mathbb{R}^{n}\setminus\{0\}}\frac{||Mx||_{2}}{||x||_{2}}$, where
$||\cdot||_{2}$ denotes the Euclidean norm on $\mathbb{R}^{n}$. Assume that an $n\times n$ matrxi $A$ with real entries satisfies $||A^{k}-A^{k-1}||\leq\frac{1}{2002k}$ for all positive integers $k$. Prove that $||A^{k}||\leq 2002$ for all positive integers $k$.
1998 IMO, 2
In a contest, there are $m$ candidates and $n$ judges, where $n\geq 3$ is an odd integer. Each candidate is evaluated by each judge as either pass or fail. Suppose that each pair of judges agrees on at most $k$ candidates. Prove that \[{\frac{k}{m}} \geq {\frac{n-1}{2n}}. \]
2011 Bogdan Stan, 2
Let be a natural number $ n\ge 2. $ Prove that there exist exactly two subsets of the set $ \left\{ \left.\left(\begin{matrix} a& b\\-b& a \end{matrix}\right)\right| a,b\in\mathbb{R} \right\} $ that are closed under multiplication and their cardinal is $ n. $
[i]Marcel Tena[/i]
2002 Romania National Olympiad, 3
Let $A\in M_4(C)$ be a non-zero matrix.
$a)$ If $\text{rank}(A)=r<4$, prove the existence of two invertible matrices $U,V\in M_4(C)$, such that:
\[UAV=\begin{pmatrix}I_r&0\\0&0\end{pmatrix}\]
where $I_r$ is the $r$-unit matrix.
$b)$ Show that if $A$ and $A^2$ have the same rank $k$, then the matrix $A^n$ has rank $k$, for any $n\ge 3$.
2008 IMC, 4
We say a triple of real numbers $ (a_1,a_2,a_3)$ is [b]better[/b] than another triple $ (b_1,b_2,b_3)$ when exactly two out of the three following inequalities hold: $ a_1 > b_1$, $ a_2 > b_2$, $ a_3 > b_3$. We call a triple of real numbers [b]special[/b] when they are nonnegative and their sum is $ 1$.
For which natural numbers $ n$ does there exist a collection $ S$ of special triples, with $ |S| \equal{} n$, such that any special triple is bettered by at least one element of $ S$?
2008 Putnam, B6
Let $ n$ and $ k$ be positive integers. Say that a permutation $ \sigma$ of $ \{1,2,\dots n\}$ is $ k$-[i]limited[/i] if $ |\sigma(i)\minus{}i|\le k$ for all $ i.$ Prove that the number of $ k$-limited permutations of $ \{1,2,\dots n\}$ is odd if and only if $ n\equiv 0$ or $ 1\pmod{2k\plus{}1}.$
2009 Putnam, A1
Let $ f$ be a real-valued function on the plane such that for every square $ ABCD$ in the plane, $ f(A)\plus{}f(B)\plus{}f(C)\plus{}f(D)\equal{}0.$ Does it follow that $ f(P)\equal{}0$ for all points $ P$ in the plane?
2016 District Olympiad, 2
Let A,B,C,D four matrices of order n with complex entries, n>=2 and let k real number such that AC+kBD=I and AD=BC. Prove that CA+kDB=I and DA=CB.
2021 Simon Marais Mathematical Competition, B1
Let $n \ge 2$ be an integer, and let $O$ be the $n \times n$ matrix whose entries are all equal to $0$. Two distinct entries of the matrix are chosen uniformly at random, and those two entries are changed from $0$ to $1$. Call the resulting matrix $A$.
Determine the probability that $A^2 = O$, as a function of $n$.
2009 Moldova Team Selection Test, 4
[color=darkred]Let $ m$ and $ n$ be two nonzero natural numbers. In every cell $ 1 \times 1$ of the rectangular table $ 2m \times 2n$ are put signs $ \plus{}$ or $ \minus{}$. We call [i]cross[/i] an union of all cells which are situated in a line and in a column of the table. Cell, which is situated at the intersection of these line and column is called [i]center of the cross[/i]. A transformation is defined in the following way: firstly we mark all points with the sign $ \minus{}$. Then consecutively, for every marked cell we change the signs in the cross, whose center is the choosen cell. We call a table [i]accesible[/i] if it can be obtained from another table after one transformation.
Find the number of all [i]accesible[/i] tables.[/color]
2019 Romania National Olympiad, 4
Let $p$ be a prime number. For any $\sigma \in S_p$ (the permutation group of $\{1,2,...,p \}),$ define the matrix $A_{\sigma}=(a_{ij}) \in \mathcal{M}_p(\mathbb{Z})$ as $a_{ij} = \sigma^{i-1}(j),$ where $\sigma^0$ is the identity permutation and $\sigma^k = \underbrace{\sigma \circ \sigma \circ ... \circ \sigma}_k.$
Prove that $D = \{ |\det A_{\sigma}| : \sigma \in S_p \}$ has at most $1+ (p-2)!$ elements.
1988 IMO Longlists, 31
For what values of $ n$ does there exist an $ n \times n$ array of entries -1, 0 or 1 such that the $ 2 \cdot n$ sums obtained by summing the elements of the rows and the columns are all different?
2009 District Olympiad, 2
Let $n\in \mathbb{N}^*$ and a matrix $A\in \mathcal{M}_n(\mathbb{C}),\ A=(a_{ij})_{1\le i, j\le n}$ such that:
\[a_{ij}+a_{jk}+a_{ki}=0,\ (\forall)i,j,k\in \{1,2,\ldots,n\}\]
Prove that $\text{rank}\ A\le 2$.
2012 VJIMC, Problem 2
Let $M$ be the (tridiagonal) $10\times10$ matrix
$$M=\begin{pmatrix}-1&3&0&\cdots&\cdots&\cdots&0\\3&2&-1&0&&&\vdots\\0&-1&2&-1&\ddots&&\vdots\\\vdots&0&-1&2&\ddots&0&\vdots\\\vdots&&\ddots&\ddots&\ddots&-1&0\\\vdots&&&0&-1&2&-1\\0&\cdots&\cdots&\cdots&0&-1&2\end{pmatrix}$$Show that $M$ has exactly nine positive real eigenvalues (counted with multiplicities).
1991 Vietnam Team Selection Test, 3
Let $\{x\}$ be a sequence of positive reals $x_1, x_2, \ldots, x_n$, defined by: $x_1 = 1, x_2 = 9, x_3=9, x_4=1$. And for $n \geq 1$ we have:
\[x_{n+4} = \sqrt[4]{x_{n} \cdot x_{n+1} \cdot x_{n+2} \cdot x_{n+3}}.\]
Show that this sequence has a finite limit. Determine this limit.
2005 IberoAmerican Olympiad For University Students, 2
Let $A,B,C$ be real square matrices of order $n$ such that $A^3=-I$, $BA^2+BA=C^6+C+I$ and $C$ is symmetric. Is it possible that $n=2005$?
2017 Romania National Olympiad, 3
Let be a natural number $ n\ge 2 $ and two $ n\times n $ complex matrices $ A,B $ that satisfy $ (AB)^3=O_n. $
Does this imply that $ (BA)^3=O_n ? $
2002 China Western Mathematical Olympiad, 4
Let $ n$ be a positive integer, let the sets $ A_{1},A_{2},\cdots,A_{n \plus{} 1}$ be non-empty subsets of the set $ \{1,2,\cdots,n\}.$ prove that there exist two disjoint non-empty subsets of the set $ \{1,2,\cdots,n \plus{} 1\}$: $ \{i_{1},i_{2},\cdots,i_{k}\}$ and $ \{j_{1},j_{2},\cdots,j_{m}\}$ such that $ A_{i_{1}}\cup A_{i_{2}}\cup\cdots\cup A_{i_{k}} \equal{} A_{j_{1}}\cup A_{j_{2}}\cup\cdots\cup A_{j_{m}}$.
2005 Moldova Team Selection Test, 3
For an ${n\times n}$ matrix $A$, let $X_{i}$ be the set of entries in row $i$, and $Y_{j}$ the set of entries in column $j$, ${1\leq i,j\leq n}$. We say that $A$ is [i]golden[/i] if ${X_{1},\dots ,X_{n},Y_{1},\dots ,Y_{n}}$ are distinct sets. Find the least integer $n$ such that there exists a ${2004\times 2004}$ golden matrix with entries in the set ${\{1,2,\dots ,n\}}$.
2006 Harvard-MIT Mathematics Tournament, 8
In how many ways can we enter numbers from the set $\{1,2,3,4\}$ into a $4\times 4$ array so that all of the following conditions hold?
(a) Each row contains all four numbers.
(b) Each column contains all four numbers.
(c) Each "quadrant" contains all four numbers. (The quadrants are the four corner $2\times 2$ squares.)