This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 76

1984 IMO, 1

Prove that $0\le yz+zx+xy-2xyz\le{7\over27}$, where $x,y$ and $z$ are non-negative real numbers satisfying $x+y+z=1$.

1977 IMO Longlists, 57

In a finite sequence of real numbers the sum of any seven successive terms is negative and the sum of any eleven successive terms is positive. Determine the maximum number of terms in the sequence.

2011 Indonesia TST, 3

Let $M$ be a point in the interior of triangle $ABC$. Let $A'$ lie on $BC$ with $MA'$ perpendicular to $BC$. Define $B'$ on $CA$ and $C'$ on $AB$ similarly. Define \[ p(M) = \frac{MA' \cdot MB' \cdot MC'}{MA \cdot MB \cdot MC}. \] Determine, with proof, the location of $M$ such that $p(M)$ is maximal. Let $\mu(ABC)$ denote this maximum value. For which triangles $ABC$ is the value of $\mu(ABC)$ maximal?

2016 Ukraine Team Selection Test, 6

Let $n$ be a fixed positive integer. Find the maximum possible value of \[ \sum_{1 \le r < s \le 2n} (s-r-n)x_rx_s, \] where $-1 \le x_i \le 1$ for all $i = 1, \cdots , 2n$.

1966 IMO Shortlist, 45

An alphabet consists of $n$ letters. What is the maximal length of a word if we know that any two consecutive letters $a,b$ of the word are different and that the word cannot be reduced to a word of the kind $abab$ with $a\neq b$ by removing letters.

1979 IMO Longlists, 68

We consider a point $P$ in a plane $p$ and a point $Q \not\in p$. Determine all the points $R$ from $p$ for which \[ \frac{QP+PR}{QR} \] is maximum.

1986 Traian Lălescu, 2.3

Among the spatial points $ A,B,C,D, $ at most two of are aparted at a distance greater than $ 1. $ Find the the maximum value of the expression: $$ g(A,B,C,D) =AB+BC+ AD+CA+DB+DC. $$

1995 Czech and Slovak Match, 3

Consider all triangles $ABC$ in the cartesian plane whose vertices are at lattice points (i.e. with integer coordinates) and which contain exactly one lattice point (to be denoted $P$) in its interior. Let the line $AP$ meet $BC$ at $E$. Determine the maximum possible value of the ratio $\frac{AP}{PE}$.

2011 Indonesia TST, 3

Let $M$ be a point in the interior of triangle $ABC$. Let $A'$ lie on $BC$ with $MA'$ perpendicular to $BC$. Define $B'$ on $CA$ and $C'$ on $AB$ similarly. Define \[ p(M) = \frac{MA' \cdot MB' \cdot MC'}{MA \cdot MB \cdot MC}. \] Determine, with proof, the location of $M$ such that $p(M)$ is maximal. Let $\mu(ABC)$ denote this maximum value. For which triangles $ABC$ is the value of $\mu(ABC)$ maximal?

2015 IMO Shortlist, A3

Let $n$ be a fixed positive integer. Find the maximum possible value of \[ \sum_{1 \le r < s \le 2n} (s-r-n)x_rx_s, \] where $-1 \le x_i \le 1$ for all $i = 1, \cdots , 2n$.

1983 IMO Shortlist, 17

Let $P_1, P_2, \dots , P_n$ be distinct points of the plane, $n \geq 2$. Prove that \[ \max_{1\leq i<j\leq n} P_iP_j > \frac{\sqrt 3}{2}(\sqrt n -1) \min_{1\leq i<j\leq n} P_iP_j \]

2006 China Team Selection Test, 2

Given positive integer $n$, find the biggest real number $C$ which satisfy the condition that if the sum of the reciprocals of a set of integers (They can be the same.) that are greater than $1$ is less than $C$, then we can divide the set of numbers into no more than $n$ groups so that the sum of reciprocals of every group is less than $1$.

1979 IMO Shortlist, 25

We consider a point $P$ in a plane $p$ and a point $Q \not\in p$. Determine all the points $R$ from $p$ for which \[ \frac{QP+PR}{QR} \] is maximum.

2023 Indonesia MO, 8

Let $a, b, c$ be three distinct positive integers. Define $S(a, b, c)$ as the set of all rational roots of $px^2 + qx + r = 0$ for every permutation $(p, q, r)$ of $(a, b, c)$. For example, $S(1, 2, 3) = \{ -1, -2, -1/2 \}$ because the equation $x^2+3x+2$ has roots $-1$ and $-2$, the equation $2x^2+3x+1=0$ has roots $-1$ and $-1/2$, and for all the other permutations of $(1, 2, 3)$, the quadratic equations formed don't have any rational roots. Determine the maximum number of elements in $S(a, b, c)$.

1979 IMO Shortlist, 20

Given the integer $n > 1$ and the real number $a > 0$ determine the maximum of $\sum_{i=1}^{n-1} x_i x_{i+1}$ taken over all nonnegative numbers $x_i$ with sum $a.$

1967 IMO Shortlist, 1

Find whether among all quadrilaterals, whose interiors lie inside a semi-circle of radius $r$, there exist one (or more) with maximum area. If so, determine their shape and area.

1976 IMO Shortlist, 10

Determine the greatest number, who is the product of some positive integers, and the sum of these numbers is $1976.$

1983 Czech and Slovak Olympiad III A, 1

Let $n$ be a positive integer and $k\in[0,n]$ be a fixed real constant. Find the maximum value of $$\left|\sum_{i=1}^n\sin(2x_i)\right|$$ where $x_1,\ldots,x_n$ are real numbers satisfying $$\sum_{i=1}^n\sin^2(x_i)=k.$$

2015 Harvard-MIT Mathematics Tournament, 6

Let $a,b,c,d,e$ be nonnegative integers such that $625a+250b+100c+40d+16e=15^3$. What is the maximum possible value of $a+b+c+d+e$?

1966 IMO Shortlist, 46

Let $a,b,c$ be reals and \[f(a, b, c) = \left| \frac{ |b-a|}{|ab|} +\frac{b+a}{ab} -\frac 2c \right| +\frac{ |b-a|}{|ab|} +\frac{b+a}{ab} +\frac 2c\] Prove that $f(a, b, c) = 4 \max \{\frac 1a, \frac 1b,\frac 1c \}.$

1976 IMO Longlists, 41

Determine the greatest number, who is the product of some positive integers, and the sum of these numbers is $1976.$

1996 IMO Shortlist, 5

Let $ P(x)$ be the real polynomial function, $ P(x) \equal{} ax^3 \plus{} bx^2 \plus{} cx \plus{} d.$ Prove that if $ |P(x)| \leq 1$ for all $ x$ such that $ |x| \leq 1,$ then \[ |a| \plus{} |b| \plus{} |c| \plus{} |d| \leq 7.\]

1995 Nordic, 3

Let $n \ge 2$ and let $x_1, x_2, ..., x_n$ be real numbers satisfying $x_1 +x_2 +...+x_n \ge 0$ and $x_1^2+x_2^2+...+x_n^2=1$. Let $M = max \{x_1, x_2,... , x_n\}$. Show that $M \ge \frac{1}{\sqrt{n(n-1)}}$ (1) .When does equality hold in (1)?

1969 IMO Shortlist, 48

$(NET 3)$ Let $x_1, x_2, x_3, x_4,$ and $x_5$ be positive integers satisfying \[x_1 +x_2 +x_3 +x_4 +x_5 = 1000,\] \[x_1 -x_2 +x_3 -x_4 +x_5 > 0,\] \[x_1 +x_2 -x_3 +x_4 -x_5 > 0,\] \[-x_1 +x_2 +x_3 -x_4 +x_5 > 0,\] \[x_1 -x_2 +x_3 +x_4 -x_5 > 0,\] \[-x_1 +x_2 -x_3 +x_4 +x_5 > 0\] $(a)$ Find the maximum of $(x_1 + x_3)^{x_2+x_4}$ $(b)$ In how many different ways can we choose $x_1, . . . , x_5$ to obtain the desired maximum?

2001 IMO Shortlist, 1

Let $A = (a_1, a_2, \ldots, a_{2001})$ be a sequence of positive integers. Let $m$ be the number of 3-element subsequences $(a_i,a_j,a_k)$ with $1 \leq i < j < k \leq 2001$, such that $a_j = a_i + 1$ and $a_k = a_j + 1$. Considering all such sequences $A$, find the greatest value of $m$.