Found problems: 155
1986 Tournament Of Towns, (108) 2
A natural number $N$ is written in its decimal representation . It is known that for each digit in this representation , this digit divides exactly into the number $N$ (the digit $0$ is not encountered). What is the maximum number of different digits which there can be in such a representation of $N$?
(S . Fomin, Leningrad)
2019 Saint Petersburg Mathematical Olympiad, 2
Every two of the $n$ cities of Ruritania are connected by a direct flight of one from two airlines. Promonopoly Committee wants at least $k$ flights performed by one company. To do this, he can at least every day to choose any three cities and change the ownership of the three flights connecting these cities each other (that is, to take each of these flights from a company that performs it, and pass the other). What is the largest $k$ committee knowingly will be able to achieve its goal in no time, no matter how the flights are distributed hour?
2012 Czech And Slovak Olympiad IIIA, 2
Find out the maximum possible area of the triangle $ABC$ whose medians have lengths satisfying inequalities $m_a \le 2, m_b \le 3, m_c \le 4$.
2010 Dutch IMO TST, 2
Find all functions $f : R \to R$ which satisfy $f(x) = max_{y\in R} (2xy - f(y))$ for all $x \in R$.
1966 All Russian Mathematical Olympiad, 083
$20$ numbers are written on the board $1, 2, ... ,20$. Two players are putting signs before the numbers in turn ($+$ or $-$). The first wants to obtain the minimal possible absolute value of the sum. What is the maximal value of the absolute value of the sum that can be achieved by the second player?
2010 Hanoi Open Mathematics Competitions, 10
Find the maximum value of $M =\frac{x}{2x + y} +\frac{y}{2y + z}+\frac{z}{2z + x}$ , $x,y, z > 0$
2016 Czech And Slovak Olympiad III A, 4
For positive numbers $a, b, c$ holds $(a + c) (b^2 + a c) = 4a$.
Determine the maximum value of $b + c$ and find all triplets of numbers $(a, b, c)$ for which expression takes this value
1946 Moscow Mathematical Olympiad, 106
What is the largest number of acute angles that a convex polygon can have?
2013 India PRMO, 18
What is the maximum possible value of $k$ for which $2013$ can be written as a sum of $k$ consecutive positive integers?
2005 JBMO Shortlist, 5
Let $O$ be the center of the concentric circles $C_1,C_2$ of radii $3$ and $5$ respectively. Let $A\in C_1, B\in C_2$ and $C$ point so that triangle $ABC$ is equilateral. Find the maximum length of $ [OC] $.
2015 Hanoi Open Mathematics Competitions, 15
Let the numbers $a, b,c$ satisfy the relation $a^2+b^2+c^2+d^2 \le 12$.
Determine the maximum value of $M = 4(a^3 + b^3 + c^3+d^3) - (a^4 + b^4 + c^4+d^4)$
1980 Spain Mathematical Olympiad, 1
Among the triangles that have a side of length $5$ m and the angle opposite of $30^o$, determine the one with maximum area, calculating the value of the other two angles and area of triangle.
2015 Dutch IMO TST, 5
For a positive integer $n$, we dene $D_n$ as the largest integer that is a divisor of $a^n + (a + 1)^n + (a + 2)^n$ for all positive integers $a$.
1. Show that for all positive integers $n$, the number $D_n$ is of the form $3^k$ with $k \ge 0$ an integer.
2. Show that for all integers $k \ge 0$ there exists a positive integer n such that $D_n = 3^k$.
1946 Moscow Mathematical Olympiad, 111
Given two intersecting planes $\alpha$ and $\beta$ and a point $A$ on the line of their intersection. Prove that of all lines belonging to $\alpha$ and passing through $A$ the line which is perpendicular to the intersection line of $\alpha$ and $\beta$ forms the greatest angle with $\beta$.
2010 Contests, 1
We write $\{a,b,c\}$ for the set of three different positive integers $a, b$, and $c$. By choosing some or all of the numbers a, b and c, we can form seven nonempty subsets of $\{a,b,c\}$. We can then calculate the sum of the elements of each subset. For example, for the set $\{4,7,42\}$ we will find sums of $4, 7, 42,11, 46, 49$, and $53$ for its seven subsets. Since $7, 11$, and $53$ are prime, the set $\{4,7,42\}$ has exactly three subsets whose sums are prime. (Recall that prime numbers are numbers with exactly two different factors, $1$ and themselves. In particular, the number $1$ is not prime.)
What is the largest possible number of subsets with prime sums that a set of three different positive integers can have? Give an example of a set $\{a,b,c\}$ that has that number of subsets with prime sums, and explain why no other three-element set could have more.
2016 Balkan MO Shortlist, A5
Let $a, b,c$ and $d$ be real numbers such that $a + b + c + d = 2$ and $ab + bc + cd + da + ac + bd = 0$.
Find the minimum value and the maximum value of the product $abcd$.
1992 China Team Selection Test, 1
16 students took part in a competition. All problems were multiple choice style. Each problem had four choices. It was said that any two students had at most one answer in common, find the maximum number of problems.
2016 Rioplatense Mathematical Olympiad, Level 3, 4
Let $c > 1$ be a real number. A function $f: [0 ,1 ] \to R$ is called c-friendly if $f(0) = 0, f(1) = 1$ and $|f(x) -f(y)| \le c|x - y|$ for all the numbers $x ,y \in [0,1]$. Find the maximum of the expression $|f(x) - f(y)|$ for all [i]c-friendly[/i] functions $f$ and for all the numbers $x,y \in [0,1]$.
1948 Moscow Mathematical Olympiad, 153
* What is the radius of the largest possible circle inscribed into a cube with side $a$?
1999 Nordic, 2
Consider $7$-gons inscribed in a circle such that all sides of the $7$-gon are of different length. Determine the maximal number of $120^\circ$ angles in this kind of a $7$-gon.
2021 JBMO Shortlist, N3
For any set $A = \{x_1, x_2, x_3, x_4, x_5\}$ of five distinct positive integers denote by $S_A$ the sum of its elements, and denote by $T_A$ the number of triples $(i, j, k)$ with $1 \le i < j < k \le 5$ for which $x_i + x_j + x_k$ divides $S_A$.
Find the largest possible value of $T_A$.
2018 VTRMC, 6
For $n \in \mathbb{N}$, define $a_n = \frac{1 + 1/3 + 1/5 + \dots + 1/(2n-1)}{n+1}$ and $b_n = \frac{1/2 + 1/4 + 1/6 + \dots + 1/(2n)}{n}$. Find the maximum and minimum of $a_n - b_n$ for $1 \leq n \leq 999$.
1965 All Russian Mathematical Olympiad, 062
What is the maximal possible length of the segment, being cut out by the sides of the triangle on the tangent to the inscribed circle, being drawn parallel to the base, if the triangle's perimeter equals $2p$?
2014 Hanoi Open Mathematics Competitions, 15
Let $a_1,a_2,...,a_9 \ge - 1$ and $a^3_1+a^3_2+...+a^3_9= 0$.
Determine the maximal value of $M = a_1 + a_2 + ... + a_9$.
1972 All Soviet Union Mathematical Olympiad, 161
Find the maximal $x$ such that the expression $4^{27} + 4^{1000} + 4^x$ is the exact square.