Found problems: 34
2019 Peru EGMO TST, 6
Let $ABC$ be a triangle with $AB=AC$, and let $M$ be the midpoint of $BC$. Let $P$ be a point such that $PB<PC$ and $PA$ is parallel to $BC$. Let $X$ and $Y$ be points on the lines $PB$ and $PC$, respectively, so that $B$ lies on the segment $PX$, $C$ lies on the segment $PY$, and $\angle PXM=\angle PYM$. Prove that the quadrilateral $APXY$ is cyclic.
2004 Bulgaria Team Selection Test, 1
The points $P$ and $Q$ lie on the diagonals $AC$ and $BD$, respectively, of a quadrilateral $ABCD$ such that $\frac{AP}{AC} + \frac{BQ}{BD} =1$. The line $PQ$ meets the sides $AD$ and $BC$ at points $M$ and $N$. Prove that the circumcircles of the triangles $AMP$, $BNQ$, $DMQ$, and $CNP$ are concurrent.
2022 Taiwan TST Round 2, 5
Let $ABCDE$ be a pentagon inscribed in a circle $\Omega$. A line parallel to the segment $BC$ intersects $AB$ and $AC$ at points $S$ and $T$, respectively. Let $X$ be the intersection of the line $BE$ and $DS$, and $Y$ be the intersection of the line $CE$ and $DT$.
Prove that, if the line $AD$ is tangent to the circle $\odot(DXY)$, then the line $AE$ is tangent to the circle $\odot(EXY)$.
[i]Proposed by ltf0501.[/i]
2013 IMAR Test, 4
Given a triangle $ABC$ , a circle centered at some point $O$ meets the segments $BC$ , $CA$ , $AB$ in the pairs of points $X$ and $X^{'}$ , $Y$ and $Y^{'}$ , $Z$ and $Z^{'}$ , respectively ,labelled in circular order : $X,X^{'},Y,Y^{'},Z,Z^{'}$. Let $M$ be the Miquel point of the triangle $XYZ$ and let $M^{'}$ be that of the triangle $X^{'}Y^{'}Z^{'}$ . Prove that the segments $OM$ and $OM^{'}$ have equal lehgths.
2019 Brazil Team Selection Test, 1
Let $ABC$ be a triangle with $AB=AC$, and let $M$ be the midpoint of $BC$. Let $P$ be a point such that $PB<PC$ and $PA$ is parallel to $BC$. Let $X$ and $Y$ be points on the lines $PB$ and $PC$, respectively, so that $B$ lies on the segment $PX$, $C$ lies on the segment $PY$, and $\angle PXM=\angle PYM$. Prove that the quadrilateral $APXY$ is cyclic.
2019 Thailand TST, 1
Let $ABC$ be a triangle with $AB=AC$, and let $M$ be the midpoint of $BC$. Let $P$ be a point such that $PB<PC$ and $PA$ is parallel to $BC$. Let $X$ and $Y$ be points on the lines $PB$ and $PC$, respectively, so that $B$ lies on the segment $PX$, $C$ lies on the segment $PY$, and $\angle PXM=\angle PYM$. Prove that the quadrilateral $APXY$ is cyclic.
2007 Ukraine Team Selection Test, 9
Points $ A_{1}$, $ B_{1}$, $ C_{1}$ are chosen on the sides $ BC$, $ CA$, $ AB$ of a triangle $ ABC$ respectively. The circumcircles of triangles $ AB_{1}C_{1}$, $ BC_{1}A_{1}$, $ CA_{1}B_{1}$ intersect the circumcircle of triangle $ ABC$ again at points $ A_{2}$, $ B_{2}$, $ C_{2}$ respectively ($ A_{2}\neq A, B_{2}\neq B, C_{2}\neq C$). Points $ A_{3}$, $ B_{3}$, $ C_{3}$ are symmetric to $ A_{1}$, $ B_{1}$, $ C_{1}$ with respect to the midpoints of the sides $ BC$, $ CA$, $ AB$ respectively. Prove that the triangles $ A_{2}B_{2}C_{2}$ and $ A_{3}B_{3}C_{3}$ are similar.
2019 Macedonia National Olympiad, 3
Let $ABC$ be a triangle with $AB=AC$, and let $M$ be the midpoint of $BC$. Let $P$ be a point such that $PB<PC$ and $PA$ is parallel to $BC$. Let $X$ and $Y$ be points on the lines $PB$ and $PC$, respectively, so that $B$ lies on the segment $PX$, $C$ lies on the segment $PY$, and $\angle PXM=\angle PYM$. Prove that the quadrilateral $APXY$ is cyclic.
2005 IMO Shortlist, 5
Let $\triangle ABC$ be an acute-angled triangle with $AB \not= AC$. Let $H$ be the orthocenter of triangle $ABC$, and let $M$ be the midpoint of the side $BC$. Let $D$ be a point on the side $AB$ and $E$ a point on the side $AC$ such that $AE=AD$ and the points $D$, $H$, $E$ are on the same line. Prove that the line $HM$ is perpendicular to the common chord of the circumscribed circles of triangle $\triangle ABC$ and triangle $\triangle ADE$.
2018 USAMO, 5
In convex cyclic quadrilateral $ABCD$, we know that lines $AC$ and $BD$ intersect at $E$, lines $AB$ and $CD$ intersect at $F$, and lines $BC$ and $DA$ intersect at $G$. Suppose that the circumcircle of $\triangle ABE$ intersects line $CB$ at $B$ and $P$, and the circumcircle of $\triangle ADE$ intersects line $CD$ at $D$ and $Q$, where $C,B,P,G$ and $C,Q,D,F$ are collinear in that order. Prove that if lines $FP$ and $GQ$ intersect at $M$, then $\angle MAC = 90^\circ$.
[i]Proposed by Kada Williams[/i]
2019 IberoAmerican, 4
Let $ABCD$ be a trapezoid with $AB\parallel CD$ and inscribed in a circumference $\Gamma$. Let $P$ and $Q$ be two points on segment $AB$ ($A$, $P$, $Q$, $B$ appear in that order and are distinct) such that $AP=QB$. Let $E$ and $F$ be the second intersection points of lines $CP$ and $CQ$ with $\Gamma$, respectively. Lines $AB$ and $EF$ intersect at $G$. Prove that line $DG$ is tangent to $\Gamma$.
2018 Romania Team Selection Tests, 1
Let $ABC$ be a triangle, and let $M$ be a point on the side $(AC)$ .The line through $M$ and parallel to $BC$ crosses $AB$ at $N$. Segments $BM$ and $CN$ cross at $P$, and the circles $BNP$ and $CMP$ cross again at $Q$. Show that angles $BAP$ and $CAQ$ are equal.
2015 Romania Team Selection Tests, 1
Let $ABC$ be a triangle. Let $P_1$ and $P_2$ be points on the side $AB$ such that $P_2$ lies on the segment $BP_1$ and $AP_1 = BP_2$; similarly, let $Q_1$ and $Q_2$ be points on the side $BC$ such that $Q_2$ lies on the segment $BQ_1$ and $BQ_1 = CQ_2$. The segments $P_1Q_2$ and $P_2Q_1$ meet at $R$, and the circles $P_1P_2R$ and $Q_1Q_2R$ meet again at $S$, situated inside triangle $P_1Q_1R$. Finally, let $M$ be the midpoint of the side $AC$. Prove that the angles $P_1RS$ and $Q_1RM$ are equal.
2024 Azerbaijan BMO TST, 2
Let $ABC$ be a triangle with circumcenter $O$. Point $X$ is the intersection of the parallel line from $O$ to $AB$ with the perpendicular line to $AC$ from $C$. Let $Y$ be the point where the external bisector of $\angle BXC$ intersects with $AC$. Let $K$ be the projection of $X$ onto $BY$. Prove that the lines $AK, XO, BC$ have a common point.
2019 Germany Team Selection Test, 2
Let $ABC$ be a triangle with $AB=AC$, and let $M$ be the midpoint of $BC$. Let $P$ be a point such that $PB<PC$ and $PA$ is parallel to $BC$. Let $X$ and $Y$ be points on the lines $PB$ and $PC$, respectively, so that $B$ lies on the segment $PX$, $C$ lies on the segment $PY$, and $\angle PXM=\angle PYM$. Prove that the quadrilateral $APXY$ is cyclic.
2019 Taiwan TST Round 1, 1
Let $ABC$ be a triangle with $AB=AC$, and let $M$ be the midpoint of $BC$. Let $P$ be a point such that $PB<PC$ and $PA$ is parallel to $BC$. Let $X$ and $Y$ be points on the lines $PB$ and $PC$, respectively, so that $B$ lies on the segment $PX$, $C$ lies on the segment $PY$, and $\angle PXM=\angle PYM$. Prove that the quadrilateral $APXY$ is cyclic.
2007 Germany Team Selection Test, 3
Points $ A_{1}$, $ B_{1}$, $ C_{1}$ are chosen on the sides $ BC$, $ CA$, $ AB$ of a triangle $ ABC$ respectively. The circumcircles of triangles $ AB_{1}C_{1}$, $ BC_{1}A_{1}$, $ CA_{1}B_{1}$ intersect the circumcircle of triangle $ ABC$ again at points $ A_{2}$, $ B_{2}$, $ C_{2}$ respectively ($ A_{2}\neq A, B_{2}\neq B, C_{2}\neq C$). Points $ A_{3}$, $ B_{3}$, $ C_{3}$ are symmetric to $ A_{1}$, $ B_{1}$, $ C_{1}$ with respect to the midpoints of the sides $ BC$, $ CA$, $ AB$ respectively. Prove that the triangles $ A_{2}B_{2}C_{2}$ and $ A_{3}B_{3}C_{3}$ are similar.
2023 Romania Team Selection Test, P1
Let $ABC$ be a triangle with circumcenter $O$. Point $X$ is the intersection of the parallel line from $O$ to $AB$ with the perpendicular line to $AC$ from $C$. Let $Y$ be the point where the external bisector of $\angle BXC$ intersects with $AC$. Let $K$ be the projection of $X$ onto $BY$. Prove that the lines $AK, XO, BC$ have a common point.
2004 Bulgaria Team Selection Test, 1
The points $P$ and $Q$ lie on the diagonals $AC$ and $BD$, respectively, of a quadrilateral $ABCD$ such that $\frac{AP}{AC} + \frac{BQ}{BD} =1$. The line $PQ$ meets the sides $AD$ and $BC$ at points $M$ and $N$. Prove that the circumcircles of the triangles $AMP$, $BNQ$, $DMQ$, and $CNP$ are concurrent.
KoMaL A Problems 2018/2019, A.748
The circles $\Omega$ and $\omega$ in its interior are fixed. The distinct points $A,B,C,D,E$ move on $\Omega$ in such a way that the line segments $AB,BC,CD,DE$ are tangents to $\omega$ .The lines $AB$ and $CD$ meet at point
$P$, the lines $BC$ and $DE$ meet at $Q$ . Let $R$ be the second intersection of the circles $BCP$and $CDQ$, other than $C$. Show that $R$ moves either on a circle or on a line.
2019 Azerbaijan IMO TST, 2
Let $ABC$ be a triangle with $AB=AC$, and let $M$ be the midpoint of $BC$. Let $P$ be a point such that $PB<PC$ and $PA$ is parallel to $BC$. Let $X$ and $Y$ be points on the lines $PB$ and $PC$, respectively, so that $B$ lies on the segment $PX$, $C$ lies on the segment $PY$, and $\angle PXM=\angle PYM$. Prove that the quadrilateral $APXY$ is cyclic.
2019 Germany Team Selection Test, 2
Let $ABC$ be a triangle with $AB=AC$, and let $M$ be the midpoint of $BC$. Let $P$ be a point such that $PB<PC$ and $PA$ is parallel to $BC$. Let $X$ and $Y$ be points on the lines $PB$ and $PC$, respectively, so that $B$ lies on the segment $PX$, $C$ lies on the segment $PY$, and $\angle PXM=\angle PYM$. Prove that the quadrilateral $APXY$ is cyclic.
2007 USA Team Selection Test, 5
Triangle $ ABC$ is inscribed in circle $ \omega$. The tangent lines to $ \omega$ at $ B$ and $ C$ meet at $ T$. Point $ S$ lies on ray $ BC$ such that $ AS \perp AT$. Points $ B_1$ and $ C_1$ lie on ray $ ST$ (with $ C_1$ in between $ B_1$ and $ S$) such that $ B_1T \equal{} BT \equal{} C_1T$. Prove that triangles $ ABC$ and $ AB_1C_1$ are similar to each other.
2018 IMO Shortlist, G2
Let $ABC$ be a triangle with $AB=AC$, and let $M$ be the midpoint of $BC$. Let $P$ be a point such that $PB<PC$ and $PA$ is parallel to $BC$. Let $X$ and $Y$ be points on the lines $PB$ and $PC$, respectively, so that $B$ lies on the segment $PX$, $C$ lies on the segment $PY$, and $\angle PXM=\angle PYM$. Prove that the quadrilateral $APXY$ is cyclic.
2023 Balkan MO Shortlist, G5
Let $ABC$ be a triangle with circumcenter $O$. Point $X$ is the intersection of the parallel line from $O$ to $AB$ with the perpendicular line to $AC$ from $C$. Let $Y$ be the point where the external bisector of $\angle BXC$ intersects with $AC$. Let $K$ be the projection of $X$ onto $BY$. Prove that the lines $AK, XO, BC$ have a common point.