This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15460

2015 India IMO Training Camp, 2

Find all triples $(p, x, y)$ consisting of a prime number $p$ and two positive integers $x$ and $y$ such that $x^{p -1} + y$ and $x + y^ {p -1}$ are both powers of $p$. [i]Proposed by Belgium[/i]

2016 IMO, 4

A set of positive integers is called [i]fragrant[/i] if it contains at least two elements and each of its elements has a prime factor in common with at least one of the other elements. Let $P(n)=n^2+n+1$. What is the least possible positive integer value of $b$ such that there exists a non-negative integer $a$ for which the set $$\{P(a+1),P(a+2),\ldots,P(a+b)\}$$ is fragrant?

2013 AIME Problems, 5

In equilateral $\triangle ABC$ let points $D$ and $E$ trisect $\overline{BC}$. Then $\sin \left( \angle DAE \right)$ can be expressed in the form $\tfrac{a\sqrt{b}}{c}$, where $a$ and $c$ are relatively prime positive integers, and $b$ is an integer that is not divisible by the square of any prime. Find $a+b+c$.

2022 JBMO Shortlist, N2

Let $a < b < c < d < e$ be positive integers. Prove that $$\frac{1}{[a, b]} + \frac{1}{[b, c]} + \frac{1}{[c, d]} + \frac{2}{[d, e]} \le 1$$ where $[x, y]$ is the least common multiple of $x$ and $y$ (e.g., $[6, 10] = 30$). When does equality hold?

2021 Taiwan TST Round 1, 5

For each prime $p$, construct a graph $G_p$ on $\{1,2,\ldots p\}$, where $m\neq n$ are adjacent if and only if $p$ divides $(m^{2} + 1-n)(n^{2} + 1-m)$. Prove that $G_p$ is disconnected for infinitely many $p$

2018 BMT Spring, 4

What is the remainder when $201820182018... $ [$2018$ times] is divided by $15$?

2022 Harvard-MIT Mathematics Tournament, 4

Compute the sum of all 2-digit prime numbers $p$ such that there exists a prime number $q$ for which $100q + p$ is a perfect square.

2007 Baltic Way, 17

Let $x,y,z$ be positive integers such that $\frac{x+1}{y}+\frac{y+1}{z}+\frac{z+1}{x}$ is an integer. Let $d$ be the greatest common divisor of $x,y$ and $z$. Prove that $d\le \sqrt[3]{xy+yz+zx}$.

2001 Switzerland Team Selection Test, 5

Let $a_1 < a_2 < ... < a_n$ be a sequence of natural numbers such that for $i < j$ the decimal representation of $a_i$ does not occur as the leftmost digits of the decimal representation of $a_j$ . (For example, $137$ and $13729$ cannot both occur in the sequence.) Prove that $\sum_{i=1}^n \frac{1}{a_i} \le 1+\frac12 +\frac13 +...+\frac19$ .

2013 QEDMO 13th or 12th, 2

Let $p$ be a prime number and $n, k$ and $q$ natural numbers, where $q\le \frac{n -1}{p-1}$ should be. Let $M$ be the set of all integers $m$ from $0$ to $n$, for which $m-k$ is divisible by $p$. Show that $$\sum_{m \in M} (-1) ^m {n \choose m}$$ is divisible by $p^q$.

2023 Malaysian IMO Training Camp, 4

Find the largest constant $c>0$ such that for every positive integer $n\ge 2$, there always exist a positive divisor $d$ of $n$ such that $$d\le \sqrt{n}\hspace{0.5cm} \text{and} \hspace{0.5cm} \tau(d)\ge c\sqrt{\tau(n)}$$ where $\tau(n)$ is the number of divisors of $n$. [i]Proposed by Mohd. Suhaimi Ramly[/i]

2023 LMT Spring, 2

How many integers of the form $n^{2023-n}$ are perfect squares, where $n$ is a positive integer between $1$ and $2023$ inclusive?

2022 Germany Team Selection Test, 3

Find all positive integers $n$ with the following property: the $k$ positive divisors of $n$ have a permutation $(d_1,d_2,\ldots,d_k)$ such that for $i=1,2,\ldots,k$, the number $d_1+d_2+\cdots+d_i$ is a perfect square.

2013 Taiwan TST Round 1, 5

An integer $a$ is called friendly if the equation $(m^2+n)(n^2+m)=a(m-n)^3$ has a solution over the positive integers. [b]a)[/b] Prove that there are at least $500$ friendly integers in the set $\{ 1,2,\ldots ,2012\}$. [b]b)[/b] Decide whether $a=2$ is friendly.

2021 Brazil National Olympiad, 5

Find all triples of non-negative integers \((a, b, c)\) such that \[a^{2}+b^{2}+c^{2} = a b c+1.\]

2015 Saint Petersburg Mathematical Olympiad, 6

A sequence of integers is defined as follows: $a_1=1,a_2=2,a_3=3$ and for $n>3$, $$a_n=\textsf{The smallest integer not occurring earlier, which is relatively prime to }a_{n-1}\textsf{ but not relatively prime to }a_{n-2}.$$Prove that every natural number occurs exactly once in this sequence. [i]M. Ivanov[/i]

2020 Jozsef Wildt International Math Competition, W55

Prove that the equation $$1320x^3=(y_1+y_2+y_3+y_4)(z_1+z_2+z_3+z_4)(t_1+t_2+t_3+t_4+t_5)$$ has infinitely many solutions in the set of Fibonacci numbers. [i]Proposed by Mihály Bencze[/i]

2004 USAMO, 2

Suppose $a_1, \dots, a_n$ are integers whose greatest common divisor is 1. Let $S$ be a set of integers with the following properties: (a) For $i=1, \dots, n$, $a_i \in S$. (b) For $i,j = 1, \dots, n$ (not necessarily distinct), $a_i - a_j \in S$. (c) For any integers $x,y \in S$, if $x+y \in S$, then $x-y \in S$. Prove that $S$ must be equal to the set of all integers.

1971 IMO Longlists, 14

Note that $8^3 - 7^3 = 169 = 13^2$ and $13 = 2^2 + 3^2.$ Prove that if the difference between two consecutive cubes is a square, then it is the square of the sum of two consecutive squares.

2018 Malaysia National Olympiad, B3

Let $n$ be an integer greater than $1$, such that $3n + 1$ is a perfect square. Prove that $n + 1$ can be expressed as a sum of three perfect squares.

2003 Indonesia MO, 7

Let $k,m,n$ be positive integers such that $k > n > 1$ and $(k,n) = 1$. If $k-n | k^m - n^{m-1}$, prove that $k \le 2n - 1$.

2020 Princeton University Math Competition, 3

Alice and Bob are playing a guessing game. Bob is thinking of a number n of the form $2^a3^b$, where a and b are positive integers between $ 1$ and $2020$, inclusive. Each turn, Alice guess a number m, and Bob will tell her either $\gcd (m, n)$ or $lcm (m, n)$ (letting her know that he is saying that $gcd$ or $lcm$), as well as whether any of the respective powers match up in their prime factorization. In particular, if $m = n$, Bob will let Alice know this, and the game is over. Determine the smallest number $k$ so that Alice is always able to find $n$ within $k$ guesses, regardless of Bob’s number or choice of revealing either the $lcm$, or the $gcd$ .

2018 CMIMC Number Theory, 8

It is given that there exists a unique triple of positive primes $(p,q,r)$ such that $p<q<r$ and \[\dfrac{p^3+q^3+r^3}{p+q+r} = 249.\] Find $r$.

1996 IMO Shortlist, 5

Show that there exists a bijective function $ f: \mathbb{N}_{0}\to \mathbb{N}_{0}$ such that for all $ m,n\in \mathbb{N}_{0}$: \[ f(3mn \plus{} m \plus{} n) \equal{} 4f(m)f(n) \plus{} f(m) \plus{} f(n). \]

2019 Denmark MO - Mohr Contest, 1

Which positive integers satisfy that the sum of the number’s last three digits added to the number itself yields $2029$?