This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15460

2019 Spain Mathematical Olympiad, 2

Determine if there exists a finite set $S$ formed by positive prime numbers so that for each integer $n\geq2$, the number $2^2 + 3^2 +...+ n^2$ is a multiple of some element of $S$.

2010 Vietnam Team Selection Test, 3

Let $S_n $ be sum of squares of the coefficient of the polynomial $(1+x)^n$. Prove that $S_{2n} +1$ is not divisible by $3.$

2023 All-Russian Olympiad Regional Round, 9.4

Let $a, b, c$ be positive integers such that no number divides some other number. If $ab-b+1 \mid abc+1$, prove that $c \geq b$.

1992 Baltic Way, 3

Find an infinite non-constant arithmetic progression of natural numbers such that each term is neither a sum of two squares, nor a sum of two cubes (of natural numbers).

DMM Team Rounds, 2017

[b]p1.[/b] What is the maximum possible value of $m$ such that there exist $m$ integers $a_1, a_2, ..., a_m$ where all the decimal representations of $a_1!, a_2!, ..., a_m!$ end with the same amount of zeros? [b]p2.[/b] Let $f : R \to R$ be a function such that $f(x) + f(y^2) = f(x^2 + y)$, for all $x, y \in R$. Find the sum of all possible $f(-2017)$. [b]p3. [/b] What is the sum of prime factors of $1000027$? [b]p4.[/b] Let $$\frac{1}{2!} +\frac{2}{3!} + ... +\frac{2016}{2017!} =\frac{n}{m},$$ where $n, m$ are relatively prime. Find $(m - n)$. [b]p5.[/b] Determine the number of ordered pairs of real numbers $(x, y)$ such that $\sqrt[3]{3 - x^3 - y^3} =\sqrt{2 - x^2 - y^2}$ [b]p6.[/b] Triangle $\vartriangle ABC$ has $\angle B = 120^o$, $AB = 1$. Find the largest real number $x$ such that $CA - CB > x$ for all possible triangles $\vartriangle ABC$. [b]p7. [/b]Jung and Remy are playing a game with an unfair coin. The coin has a probability of $p$ where its outcome is heads. Each round, Jung and Remy take turns to flip the coin, starting with Jung in round $ 1$. Whoever gets heads first wins the game. Given that Jung has the probability of $8/15$ , what is the value of $p$? [b]p8.[/b] Consider a circle with $7$ equally spaced points marked on it. Each point is $ 1$ unit distance away from its neighbors and labelled $0,1,2,...,6$ in that order counterclockwise. Feng is to jump around the circle, starting at the point $0$ and making six jumps counterclockwise with distinct lengths $a_1, a_2, ..., a_6$ in a way such that he will land on all other six nonzero points afterwards. Let $s$ denote the maximum value of $a_i$. What is the minimum possible value of $s$? [b]p9. [/b]Justin has a $4 \times 4 \times 4$ colorless cube that is made of $64$ unit-cubes. He then colors $m$ unit-cubes such that none of them belong to the same column or row of the original cube. What is the largest possible value of $m$? [b]p10.[/b] Yikai wants to know Liang’s secret code which is a $6$-digit integer $x$. Furthermore, let $d(n)$ denote the digital sum of a positive integer $n$. For instance, $d(14) = 5$ and $d(3) = 3$. It is given that $$x + d(x) + d(d(x)) + d(d(d(x))) = 999868.$$ Please find $x$. PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2023 Purple Comet Problems, 5

Positive integers $m$ and $n$ satisfy $$(m + n)(24mn + 1) = 2023.$$ Find $m + n + 12mn$.

2022 AMC 12/AHSME, 4

The least common multiple of a positive integer $n$ and 18 is 180, and the greatest common divisor of $n$ and 45 is 15. What is the sum of the digits of $n$? $\textbf{(A) }3\qquad\textbf{(B) }6\qquad\textbf{(C) }8\qquad\textbf{(D) }9\qquad\textbf{(E) }12$

2016 Canadian Mathematical Olympiad Qualification, 1

(a) Find all positive integers $n$ such that $11|(3^n + 4^n)$. (b) Find all positive integers $n$ such that $31|(4^n + 7^n + 20^n)$.

2007 AIME Problems, 9

In right triangle $ABC$ with right angle $C$, $CA=30$ and $CB=16$. Its legs $\overline{CA}$ and $\overline{CB}$ are extended beyond $A$ and $B$. Points $O_{1}$ and $O_{2}$ lie in the exterior of the triangle and are the centers of two circles with equal radii. The circle with center $O_{1}$ is tangent to the hypotenuse and to the extension of leg CA, the circle with center $O_{2}$ is tangent to the hypotenuse and to the extension of leg CB, and the circles are externally tangent to each other. The length of the radius of either circle can be expressed as $p/q$, where $p$ and $q$ are relatively prime positive integers. Find $p+q$.

1992 Mexico National Olympiad, 2

Given a prime number $p$, how many $4$-tuples $(a, b, c, d)$ of positive integers with $0 \le a, b, c, d \le p-1$ satisfy $ad = bc$ mod $p$?

2021 EGMO, 6

Does there exist a nonnegative integer $a$ for which the equation \[\left\lfloor\frac{m}{1}\right\rfloor + \left\lfloor\frac{m}{2}\right\rfloor + \left\lfloor\frac{m}{3}\right\rfloor + \cdots + \left\lfloor\frac{m}{m}\right\rfloor = n^2 + a\] has more than one million different solutions $(m, n)$ where $m$ and $n$ are positive integers? [i]The expression $\lfloor x\rfloor$ denotes the integer part (or floor) of the real number $x$. Thus $\lfloor\sqrt{2}\rfloor = 1, \lfloor\pi\rfloor =\lfloor 22/7 \rfloor = 3, \lfloor 42\rfloor = 42,$ and $\lfloor 0 \rfloor = 0$.[/i]

2006 Bosnia and Herzegovina Junior BMO TST, 3

Let $a, b, c, d$ be positive integers such that $ab = cd$. Prove that $w = a^{2006} + b^{2006} + c^{2006} + d^{2006}$ is composite.

2020 Bundeswettbewerb Mathematik, 2

Prove that there are no rational numbers $x,y,z$ with $x+y+z=0$ and $x^2+y^2+z^2=100$.

2014 Czech-Polish-Slovak Junior Match, 1

The set of $\{1,2,3,...,63\}$ was divided into three non-empty disjoint sets $A,B$. Let $a,b,c$ be the product of all numbers in each set $A,B,C$ respectively and finally we have determined the greatest common divisor of these three products. What was the biggest result we could get?

2016 IMO Shortlist, N1

For any positive integer $k$, denote the sum of digits of $k$ in its decimal representation by $S(k)$. Find all polynomials $P(x)$ with integer coefficients such that for any positive integer $n \geq 2016$, the integer $P(n)$ is positive and $$S(P(n)) = P(S(n)).$$ [i]Proposed by Warut Suksompong, Thailand[/i]

2018 PUMaC Number Theory A, 4

Let $n$ be a positive integer. Let $f(n)$ be the probability that, if divisors $a, b, c$ of $n$ are selected uniformly at random with replacement, then $\gcd(a, \text{lcm}(b, c)) = \text{lcm}(a, \gcd(b, c))$. Let $s(n)$ be the sum of the distinct prime divisors of $n$. If $f(n) < \frac{1}{2018}$, compute the smallest possible value of $s(n)$.

2012 Princeton University Math Competition, A7

Let $a, b$, and $c$ be positive integers satisfying $a^4 + a^2b^2 + b^4 = 9633$ $2a^2 + a^2b^2 + 2b^2 + c^5 = 3605$. What is the sum of all distinct values of $a + b + c$?

2014 India PRMO, 2

The first term of a sequence is $2014$. Each succeeding term is the sum of the cubes of the digits of the previous term. What is the $2014$ th term of the sequence?

2024 Tuymaada Olympiad, 3

Three athletes ran at different constant speeds along a track of length $1$. They started moving at the same time at one end of the track. Having reached one of the ends of the track, the athlete immediately turned around and continued running in the opposite direction. After a while, all three athletes met at the start and finished training. At what maximum $S$ can we knowingly say that at some point the sum of the pairwise distances between athletes was at least $S$? [i]Proposed by A. Golovanov, I. Rubanov[/i]

2004 China Team Selection Test, 2

Let $p_1, p_2, \ldots, p_{25}$ are primes which don’t exceed 2004. Find the largest integer $T$ such that every positive integer $\leq T$ can be expressed as sums of distinct divisors of $(p_1\cdot p_2 \cdot \ldots \cdot p_{25})^{2004}.$

2019 Auckland Mathematical Olympiad, 4

Find the smallest positive integer that cannot be expressed in the form $\frac{2^a - 2^b}{2^c - 2^d}$, where $a$, $ b$, $c$, $d$ are non-negative integers.

2017 China National Olympiad, 1

The sequences $\{u_{n}\}$ and $\{v_{n}\}$ are defined by $u_{0} =u_{1} =1$ ,$u_{n}=2u_{n-1}-3u_{n-2}$ $(n\geq2)$ , $v_{0} =a, v_{1} =b , v_{2}=c$ ,$v_{n}=v_{n-1}-3v_{n-2}+27v_{n-3}$ $(n\geq3)$. There exists a positive integer $N$ such that when $n> N$, we have $u_{n}\mid v_{n}$ . Prove that $3a=2b+c$.

2011 Belarus Team Selection Test, 1

Given natural number $a>1$ and different odd prime numbers $p_1,p_2,...,p_n$ with $a^{p_1}\equiv 1$ (mod $p_2$), $a^{p_2}\equiv 1$ (mod $p_3$), ..., $a^{p_n}\equiv 1$(mod $p_1$). Prove that a) $(a-1)\vdots p_i$ for some $i=1,..,n$ b) Can $(a-1)$ be divisible by $p_i $for exactly one $i$ of $i=1,...,n$? I. Bliznets

VI Soros Olympiad 1999 - 2000 (Russia), 11.1

$16$ different natural numbers are written on the board, none of which exceeds $30$. Prove that there must be two coprime numbers among the written numbers.

2008 Austria Beginners' Competition, 1

Determine all positive integers $n$ such that $\frac{2^n}{n^2}$ is an integer.