This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15460

2010 Korea Junior Math Olympiad, 6

Let $n\in\mathbb{N}$ and $p$ is the odd prime number. Define the sequence $a_n$ such that $a_1=pn+1$ and $a_{k+1}=na_k+1$ for all $k \in \mathbb{N}$ . Prove that $a_{p-1}$ is compound number.

2021 Argentina National Olympiad Level 2, 5

Determine all positive integers $n$ such that $$n\cdot 2^{n-1}+1$$ is a perfect square.

2024 ELMO Shortlist, N7

For a prime $p$, let $\mathbb{F}_p$ denote the integers modulo $p$, and let $\mathbb{F}_p[x]$ be the set of polynomials with coefficients in $\mathbb{F}_p$. Find all $p$ for which there exists a quartic polynomial $P(x) \in \mathbb{F}_p[x]$ such that for all integers $k$, there exists some integer $\ell$ such that $P(\ell) \equiv k \pmod p$. (Note that there are $p^4(p-1)$ quartic polynomials in $\mathbb{F}_p[x]$ in total.) [i]Aprameya Tripathy[/i]

1996 Singapore Team Selection Test, 2

Let $ k$ be a positive integer. Show that there are infinitely many perfect squares of the form $ n \cdot 2^k \minus{} 7$ where $ n$ is a positive integer.

2011 All-Russian Olympiad Regional Round, 9.7

Find all prime numbers $p$, $q$ and $r$ such that the fourth power of any of them minus one is divisible by the product of the other two. (Author: V. Senderov)

2012 Iran MO (3rd Round), 8

[b]a)[/b] Does there exist an infinite subset $S$ of the natural numbers, such that $S\neq \mathbb{N}$, and such that for each natural number $n\not \in S$, exactly $n$ members of $S$ are coprime with $n$? [b]b)[/b] Does there exist an infinite subset $S$ of the natural numbers, such that for each natural number $n\in S$, exactly $n$ members of $S$ are coprime with $n$? [i]Proposed by Morteza Saghafian[/i]

2009 Argentina National Olympiad, 2

A positive integer $n$ is [i]acceptable [/i] if the sum of the squares of its proper divisors is equal to $2n+4$ (a divisor of $n$ is [i]proper [/i] if it is different from $1$ and of $n$ ). Find all acceptable numbers less than $10000$,

Kvant 2020, M2613

Find all functions $f : \mathbb{N}\rightarrow{\mathbb{N}}$ such that for all positive integers $m$ and $n$ the number $f(m)+n-m$ is divisible by $f(n)$.

1989 IMO Shortlist, 30

Prove that for each positive integer $ n$ there exist $ n$ consecutive positive integers none of which is an integral power of a prime number.

2009 Romania Team Selection Test, 3

Show that there are infinitely many pairs of prime numbers $(p,q)$ such that $p\mid 2^{q-1}-1$ and $q\mid 2^{p-1}-1$.

2001 AIME Problems, 12

Given a triangle, its midpoint triangle is obtained by joining the midpoints of its sides. A sequence of polyhedra $P_{i}$ is defined recursively as follows: $P_{0}$ is a regular tetrahedron whose volume is 1. To obtain $P_{i+1}$, replace the midpoint triangle of every face of $P_{i}$ by an outward-pointing regular tetrahedron that has the midpoint triangle as a face. The volume of $P_{3}$ is $\frac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Find $m+n$.

1978 Chisinau City MO, 159

Prove that the product of numbers $1, 2, ..., n$ ($n \ge 2$) is divisible by their sum if and only if the number $n + 1$ is not prime.

2012 Tournament of Towns, 2

Let $C(n)$ be the number of prime divisors of a positive integer n. (For example, $C(10) = 2,C(11) = 1, C(12) = 2$). Consider set S of all pairs of positive integers $(a, b)$ such that $a\ne b$ and $C(a + b) = C(a) + C(b)$. Is set $S$ finite or infinite?

1984 IMO, 3

Let $a,b,c,d$ be odd integers such that $0<a<b<c<d$ and $ad=bc$. Prove that if $a+d=2^k$ and $b+c=2^m$ for some integers $k$ and $m$, then $a=1$.

1994 Bundeswettbewerb Mathematik, 1

Find all natural numbers $ n$ for which every natural number whose decimal representation has $ n \minus{} 1$ digits $ 1$ and one digit $ 7$ is prime.

2023 Romania JBMO TST, P4

Let $M \geq 1$ be a real number. Determine all natural numbers $n$ for which there exist distinct natural numbers $a$, $b$, $c > M$, such that $n = (a,b) \cdot (b,c) + (b,c) \cdot (c,a) + (c,a) \cdot (a,b)$ (where $(x,y)$ denotes the greatest common divisor of natural numbers $x$ and $y$).

2013 Tournament of Towns, 2

Does there exist a ten-digit number such that all its digits are different and after removing any six digits we get a composite four-digit number?

2018 HMNT, 4

Find the number of eight-digit positive integers that are multiples of $9$ and have all distinct digits.

2024 Kyiv City MO Round 1, Problem 1

The difference of fractions $\frac{2024}{2023} - \frac{2023}{2024}$ was represented as an irreducible fraction $\frac{p}{q}$. Find the value of $p$.

2006 China Team Selection Test, 3

Let $a_{i}$ and $b_{i}$ ($i=1,2, \cdots, n$) be rational numbers such that for any real number $x$ there is: \[x^{2}+x+4=\sum_{i=1}^{n}(a_{i}x+b)^{2}\] Find the least possible value of $n$.

2023 Stanford Mathematics Tournament, R4

[b]p10.[/b] Three rectangles of dimension $X \times 2$ and four rectangles of dimension $Y \times 1$ are the pieces that form a rectangle of area $3XY$ where $X$ and $Y$ are positive, integer values. What is the sum of all possible values of $X$? [b]p11.[/b] Suppose we have a polynomial $p(x) = x^2 + ax + b$ with real coefficients $a + b = 1000$ and $b > 0$. Find the smallest possible value of $b$ such that $p(x)$ has two integer roots. [b]p12.[/b] Ten square slips of paper of the same size, numbered $0, 1, 2, ..., 9$, are placed into a bag. Four of these squares are then randomly chosen and placed into a two-by-two grid of squares. What is the probability that the numbers in every pair of blocks sharing a side have an absolute difference no greater than two? PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2008 Junior Balkan Team Selection Tests - Romania, 1

Let $ p$ be a prime number, $ p\not \equal{} 3$, and integers $ a,b$ such that $p\mid a+b$ and $ p^2\mid a^3 \plus{} b^3$. Prove that $ p^2\mid a \plus{} b$ or $ p^3\mid a^3 \plus{} b^3$.

1995 Baltic Way, 4

Josh is older than Fred. Josh notices that if he switches the two digits of his age (an integer), he gets Fred’s age. Moreover, the difference between the squares of their ages is a square of an integer. How old are Josh and Fred?

2001 Taiwan National Olympiad, 5

Let $f(n)=\sum_{k=0}^{n-1}x^ky^{n-1-k}$ with, $x$, $y$ real numbers. If $f(n)$, $f(n+1)$, $f(n+2)$, $f(n+3)$, are integers for some $n$, prove $f(n)$ is integer for all $n$.

1995 Brazil National Olympiad, 3

For any positive integer $ n>1$, let $ P\left(n\right)$ denote the largest prime divisor of $ n$. Prove that there exist infinitely many positive integers $ n$ for which \[ P\left(n\right)<P\left(n\plus{}1\right)<P\left(n\plus{}2\right).\]