This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15460

2005 Nordic, 1

Find all positive integers $k$ such that the product of the digits of $k$, in decimal notation, equals \[\frac{25}{8}k-211\]

2005 Thailand Mathematical Olympiad, 9

Compute gcd $\left( \frac{135^{90}-45^{90}}{90^2} , 90^2 \right)$

2001 Saint Petersburg Mathematical Olympiad, 9.4

Let $a,b,c\in\mathbb{Z^{+}}$ such that $$(a^2-1, b^2-1, c^2-1)=1$$ Prove that $$(ab+c, bc+a, ca+b)=(a,b,c)$$ (As usual, $(x,y,z)$ means the greatest common divisor of numbers $x,y,z$) [I]Proposed by A. Golovanov[/i]

2001 All-Russian Olympiad Regional Round, 11.8

Prove that in any set consisting of $117$ pairwise distinct three-digit numbers, you can choose $4$ pairwise disjoint subsets in which the sums of numbers are equal.

2009 Tournament Of Towns, 4

Denote by $[n]!$ the product $ 1 \cdot 11 \cdot 111\cdot ... \cdot \underbrace{111...1}_{\text{n ones}}$.($n$ factors in total). Prove that $[n + m]!$ is divisible by $ [n]! \times [m]!$ [i](8 points)[/i]

2016 Indonesia TST, 2

Let $a,b$ be two positive integers, such that $ab\neq 1$. Find all the integer values that $f(a,b)$ can take, where \[ f(a,b) = \frac { a^2+ab+b^2} { ab- 1} . \]

2008 Balkan MO Shortlist, N4

Solve the given equation in primes \begin{align*} xyz=1 +2^{y^2+1} \end{align*}

2025 CMIMC Algebra/NT, 5

Consider all positive multiples of $77$ less than $1,000,000.$ What is the sum of all the odd digits that show up?

2014 Mexico National Olympiad, 4

Problem 4 Let $ABCD$ be a rectangle with diagonals $AC$ and $BD$. Let $E$ be the intersection of the bisector of $\angle CAD$ with segment $CD$, $F$ on $CD$ such that $E$ is midpoint of $DF$, and $G$ on $BC$ such that $BG = AC$ (with $C$ between $B$ and $G$). Prove that the circumference through $D$, $F$ and $G$ is tangent to $BG$.

2022 Durer Math Competition Finals, 10

The pair of positive integers $(a, b)$ is such that a does not divide $b$, $b$ does not divide a, both numbers are at most $100$, and they have the maximal possible number of common divisors. What is the largest possible value of $a \cdot· b$?

2014 Canadian Mathematical Olympiad Qualification, 3

Let $1000 \leq n = \text{ABCD}_{10} \leq 9999$ be a positive integer whose digits $\text{ABCD}$ satisfy the divisibility condition: $$1111 | (\text{ABCD} + \text{AB} \times \text{CD}).$$ Determine the smallest possible value of $n$.

EMCC Team Rounds, 2019

[b]p1.[/b] Three positive integers sum to $16$. What is the least possible value of the sum of their squares? [b]p2.[/b] Ben is thinking of an odd positive integer less than $1000$. Ben subtracts $ 1$ from his number and divides by $2$, resulting in another number. If his number is still odd, Ben repeats this procedure until he gets an even number. Given that the number he ends on is $2$, how many possible values are there for Ben’s original number? [b]p3.[/b] Triangle $ABC$ is isosceles, with $AB = BC = 18$ and has circumcircle $\omega$. Tangents to $\omega$ at $ A$ and $ B$ intersect at point $D$. If $AD = 27$, what is the length of $AC$? [b]p4.[/b] How many non-decreasing sequences of five natural numbers have first term $ 1$, last term $ 11$, and have no three terms equal? [b]p5.[/b] Adam is bored, and has written the string “EMCC” on a piece of paper. For fun, he decides to erase every letter “C”, and replace it with another instance of “EMCC”. For example, after one step, he will have the string “EMEMCCEMCC”. How long will his string be after $8$ of these steps? [b]p6.[/b] Eric has two coins, which land heads $40\%$ and $60\%$ of the time respectively. He chooses a coin randomly and flips it four times. Given that the first three flips contained two heads and one tail, what is the probability that the last flip was heads? [b]p7.[/b] In a five person rock-paper-scissors tournament, each player plays against every other player exactly once, with each game continuing until one player wins. After each game, the winner gets $ 1$ point, while the loser gets no points. Given that each player has a $50\%$ chance of defeating any other player, what is the probability that no two players end up with the same amount of points? [b]p8.[/b] Let $\vartriangle ABC$ have $\angle A = \angle B = 75^o$. Points $D, E$, and $F$ are on sides $BC$, $CA$, and $AB$, respectively, so that $EF$ is parallel to $BC$, $EF \perp DE$, and $DE = EF$. Find the ratio of $\vartriangle DEF$’s area to $\vartriangle ABC$’s area. [b]p9.[/b] Suppose $a, b, c$ are positive integers such that $a+b =\sqrt{c^2 + 336}$ and $a-b =\sqrt{c^2 - 336}$. Find $a+b+c$. [b]p10.[/b] How many times on a $12$-hour analog clock are there, such that when the minute and hour hands are swapped, the result is still a valid time? (Note that the minute and hour hands move continuously, and don’t always necessarily point to exact minute/hour marks.) [b]p11.[/b] Adam owns a square $S$ with side length $42$. First, he places rectangle $A$, which is $6$ times as long as it is wide, inside the square, so that all four vertices of $A$ lie on sides of $S$, but none of the sides of $ A$ are parallel to any side of $S$. He then places another rectangle $B$, which is $ 7$ times as long as it is wide, inside rectangle $A$, so that all four vertices of $ B$ lie on sides of $ A$, and again none of the sides of $B$ are parallel to any side of $A$. Find the length of the shortest side of rectangle $ B$. [b]p12.[/b] Find the value of $\sqrt{3 \sqrt{3^3 \sqrt{3^5 \sqrt{...}}}}$, where the exponents are the odd natural numbers, in increasing order. [b]p13.[/b] Jamesu and Fhomas challenge each other to a game of Square Dance, played on a $9 \times 9$ square grid. On Jamesu’s turn, he colors in a $2\times 2$ square of uncolored cells pink. On Fhomas’s turn, he colors in a $1 \times 1$ square of uncolored cells purple. Once Jamesu can no longer make a move, Fhomas gets to color in the rest of the cells purple. If Jamesu goes first, what the maximum number of cells that Fhomas can color purple, assuming both players play optimally in trying to maximize the number of squares of their color? [b]p14.[/b] Triangle $ABC$ is inscribed in circle $\omega$. The tangents to $\omega$ from $B$ and $C$ meet at $D$, and segments $AD$ and $BC$ intersect at $E$. If $\angle BAC = 60^o$ and the area of $\vartriangle BDE$ is twice the area of $\vartriangle CDE$, what is $\frac{AB}{AC}$ ? [b]p15.[/b] Fhomas and Jamesu are now having a number duel. First, Fhomas chooses a natural number $n$. Then, starting with Jamesu, each of them take turns making the following moves: if $n$ is composite, the player can pick any prime divisor $p$ of $n$, and replace $n$ by $n - p$, if $n$ is prime, the player can replace n by $n - 1$. The player who is faced with $ 1$, and hence unable to make a move, loses. How many different numbers $2 \le n \le 2019$ can Fhomas choose such that he has a winning strategy, assuming Jamesu plays optimally? PS. You had better use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2016 Poland - Second Round, 4

Let $k$ be a positive integer. Show that exists positive integer $n$, such that sets $A = \{ 1^2, 2^2, 3^2, ...\}$ and $B = \{1^2 + n, 2^2 + n, 3^2 + n, ... \}$ have exactly $k$ common elements.

Math Hour Olympiad, Grades 5-7, 2023.67

[u]Round 1[/u] [b]p1.[/b] Ash is running around town catching Pokémon. Each day, he may add $3, 4$, or $5$ Pokémon to his collection, but he can never add the same number of Pokémon on two consecutive days. What is the smallest number of days it could take for him to collect exactly $100$ Pokémon? [b]p2.[/b] Jack and Jill have ten buckets. One bucket can hold up to $1$ gallon of water, another can hold up to $2$ gallons, and so on, with the largest able to hold up to $10$ gallons. The ten buckets are arranged in a line as shown below. Jack and Jill can pour some amount of water into each bucket, but no bucket can have less water than the one to its left. Is it possible that together, the ten buckets can hold 36 gallons of water? [img]https://cdn.artofproblemsolving.com/attachments/f/8/0b6524bebe8fe859fe7b1bc887ac786106fc17.png[/img] [b]p3.[/b] There are $2023$ knights and liars standing in a row. Knights always tell the truth and liars always lie. Each of them says, “the number of liars to the left of me is greater than the number of knights to the right.” How many liars are there? [b]p4.[/b] Camila has a deck of $101$ cards numbered $1, 2, ..., 101$. She starts with $50$ random cards in her hand and the rest on a table with the numbers visible. In an exchange, she replaces all $50$ cards in her hand with her choice of $50$ of the $51$ cards from the table. Show that Camila can make at most 50 exchanges and end up with cards $1, 2, ..., 50$. [img]https://cdn.artofproblemsolving.com/attachments/0/6/c89e65118764f3b593da45264bfd0d89e95067.png[/img] [b]p5.[/b] There are $101$ pirates on a pirate ship: the captain and $100$ crew. Each pirate, including the captain, starts with $1$ gold coin. The captain makes proposals for redistributing the coins, and the crew vote on these proposals. The captain does not vote. For every proposal, each crew member greedily votes “yes” if he gains coins as a result of the proposal, “no” if he loses coins, and passes otherwise. If strictly more crew members vote “yes” than “no,” the proposal takes effect. The captain can make any number of proposals, one after the other. What is the largest number of coins the captain can accumulate? [u]Round 2[/u] [b]p6.[/b] The town of Lumenville has $100$ houses and is preparing for the math festival. The Tesla wiring company will lay lengths of power wire in straight lines between the houses so that power flows between any two houses, possibly by passing through other houses. The Edison lighting company will hang strings of lights in straight lines between pairs of houses so that each house is connected by a string to exactly one other. Show that however the houses are arranged, the Edison company can always hang their strings of lights so that the total length of the strings is no more than the total length of the power wires the Tesla company used. [img]https://cdn.artofproblemsolving.com/attachments/9/2/763de9f4138b4dc552247e9316175036c649b6.png[/img] [b]p7.[/b] You are given a sequence of $16$ digits. Is it always possible to select one or more digits in a row, so that multiplying them results in a square number? [img]https://cdn.artofproblemsolving.com/attachments/d/1/f4fcda2e1e6d4a1f3a56cd1a04029dffcd3529.png[/img] PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2018 All-Russian Olympiad, 4

Initially, a positive integer is written on the blackboard. Every second, one adds to the number on the board the product of all its nonzero digits, writes down the results on the board, and erases the previous number. Prove that there exists a positive integer which will be added inifinitely many times.

2016 SDMO (High School), 2

Let $a$, $b$, $c$, $d$ be four integers. Prove that $$\left(b-a\right)\left(c-a\right)\left(d-a\right)\left(d-c\right)\left(d-b\right)\left(c-b\right)$$ is divisible by $12$.

2005 MOP Homework, 1

Find all triples $(x,y,z)$ such that $x^2+y^2+z^2=2^{2004}$.

2012 Thailand Mathematical Olympiad, 3

Let $m, n > 1$ be coprime odd integers. Show that $$\big \lfloor \frac{m^{\phi (n)+1} + n^{\phi (m)+1}}{mn} \rfloor$$ is an even integer, where $\phi$ is Euler’s totient function.

2010 Malaysia National Olympiad, 8

Find the last digit of \[7^1\times 7^2\times 7^3\times \cdots \times 7^{2009}\times 7^{2010}.\]

2006 MOP Homework, 4

Find all pairs $(a,b)$ of positive real numbers such that $\lfloor a \lfloor bn \rfloor \rfloor =n - 1$ for all positive integers $n$.

KoMaL A Problems 2021/2022, A. 822

Is it possible to find $p,q,r\in\mathbb Q$ such that $p+q+r=0$ and $pqr=1$? [i]Proposed by Máté Weisz, Cambridge[/i]

1994 Tournament Of Towns, (417) 5

Find the maximal integer $ M$ with nonzero last digit (in its decimal representation) such that after crossing out one of its digits (not the first one) we can get an integer that divides $M$. (A Galochkin)

2008 AIME Problems, 7

Let $ S_i$ be the set of all integers $ n$ such that $ 100i\leq n < 100(i \plus{} 1)$. For example, $ S_4$ is the set $ {400,401,402,\ldots,499}$. How many of the sets $ S_0, S_1, S_2, \ldots, S_{999}$ do not contain a perfect square?

2013 Online Math Open Problems, 34

For positive integers $n$, let $s(n)$ denote the sum of the squares of the positive integers less than or equal to $n$ that are relatively prime to $n$. Find the greatest integer less than or equal to \[ \sum_{n\mid 2013} \frac{s(n)}{n^2}, \] where the summation runs over all positive integers $n$ dividing $2013$. [i]Ray Li[/i]

2005 Serbia Team Selection Test, 3

problem 3: (a) Show that there exists a multiple of 2005 whose sum of (decimal) digits equals 2. (b) Let $x_n$ denote the number obtained by writing natural numbers from $1$ to $n$ one after another (for example, $x_1 = 1, x_2 = 12,...,x_{13} = 12345678910111213$). Prove that the sequence $x_1,x_2,...$ contains infinitely many terms that are divisiblenby 2005.