Found problems: 15460
2010 Belarus Team Selection Test, 1.1
Does there exist a subset $E$ of the set $N$ of all positive integers such that none of the elements in $E$ can be presented as a sum of at least two other (not necessarily distinct) elements from $E$ ?
(E. Barabanov)
1985 Swedish Mathematical Competition, 2
Find the least natural number such that if the first digit (in the decimal system) is placed last, the new number is $7/2 $ times as large as the original number.
2010 Putnam, B3
There are 2010 boxes labeled $B_1,B_2,\dots,B_{2010},$ and $2010n$ balls have been distributed among them, for some positive integer $n.$ You may redistribute the balls by a sequence of moves, each of which consists of choosing an $i$ and moving [i]exactly[/i] $i$ balls from box $B_i$ into any one other box. For which values of $n$ is it possible to reach the distribution with exactly $n$ balls in each box, regardless of the initial distribution of balls?
2014 Junior Balkan Team Selection Tests - Romania, 2
Determine the prime numbers $p$ and $q$ that satisfy the equality: $p^3 + 107 = 2q (17q + 24)$ .
2018 Belarusian National Olympiad, 9.6
For all positive integers $m$ and $n$ prove the inequality
$$
|n\sqrt{n^2+1}-m|\geqslant \sqrt{2}-1.
$$
1996 Baltic Way, 9
Let $n$ and $k$ be integers, $1\le k\le n$. Find an integer $b$ and a set $A$ of $n$ integers satisfying the following conditions:
(i) No product of $k-1$ distinct elements of $A$ is divisible by $b$.
(ii) Every product of $k$ distinct elements of $A$ is divisible by $b$.
(iii) For all distinct $a,a'$ in $A$, $a$ does not divide $a'$.
2022 Iran MO (3rd Round), 4
$a_1,a_2,\ldots$ is a sequence of [u]nonzero integer[/u] numbers that for all $n\in\mathbb{N}$, if $a_n=2^\alpha k$ such that $k$ is an odd integer and $\alpha$ is a nonnegative integer then: $a_{n+1}=2^\alpha-k$. Prove that if this sequence is periodic, then for all $n\in\mathbb{N}$ we have: $a_{n+2}=a_n$. (The sequence $a_1,a_2,\ldots$ is periodic iff there exists natural number $d$ that for all $n\in\mathbb{N}$ we have: $a_{n+d}=a_n$)
2019 Girls in Mathematics Tournament, 4
A positive integer $n$ is called [i]cute[/i] when there is a positive integer $m$ such that $m!$ ends in exactly $n$ zeros.
a) Determine if $2019$ is cute.
b) How many positive integers less than $2019$ are cute?
2018 CHMMC (Fall), Individual
[b]p1.[/b] Two robots race on the plane from $(0, 0)$ to $(a, b)$, where $a$ and $b$ are positive real numbers with $a < b$. The robots move at the same constant speed. However, the first robot can only travel in directions parallel to the lines $x = 0$ or $y = 0$, while the second robot can only travel in directions parallel to the lines $y = x$ or $y = -x$. Both robots take the shortest possible path to $(a, b)$ and arrive at the same time. Find the ratio $\frac{a}{b}$ .
[b]p2.[/b] Suppose $x + \frac{1}{x} + y + \frac{1}{y} = 12$ and $x^2 + \frac{1}{x^2} + y^2 + \frac{1}{y^2} = 70$. Compute $x^3 + \frac{1}{x^3} + y^3 + \frac{1}{y^3}$.
[b]p3.[/b] Find the largest non-negative integer $a$ such that $2^a$ divides $$3^{2^{2018}}+ 3.$$
[b]p4.[/b] Suppose $z$ and $w$ are complex numbers, and $|z| = |w| = z \overline{w}+\overline{z}w = 1$. Find the largest possible value of $Re(z + w)$, the real part of $z + w$.
[b]p5.[/b] Two people, $A$ and $B$, are playing a game with three piles of matches. In this game, a move consists of a player taking a positive number of matches from one of the three piles such that the number remaining in the pile is equal to the nonnegative difference of the numbers of matches in the other two piles. $A$ and $B$ each take turns making moves, with $A$ making the first move. The last player able to make a move wins. Suppose that the three piles have $10$, $x$, and $30$ matches. Find the largest value of $x$ for which $A$ does not have a winning strategy.
[b]p6.[/b] Let $A_1A_2A_3A_4A_5A_6$ be a regular hexagon with side length $1$. For $n = 1$,$...$, $6$, let $B_n$ be a point on the segment $A_nA_{n+1}$ chosen at random (where indices are taken mod $6$, so $A_7 = A_1$). Find the expected area of the hexagon $B_1B_2B_3B_4B_5B_6$.
[b]p7.[/b] A termite sits at the point $(0, 0, 0)$, at the center of the octahedron $|x| + |y| + |z| \le 5$. The termite can only move a unit distance in either direction parallel to one of the $x$, $y$, or $z$ axes: each step it takes moves it to an adjacent lattice point. How many distinct paths, consisting of $5$ steps, can the termite use to reach the surface of the octahedron?
[b]p8.[/b] Let $$P(x) = x^{4037} - 3 - 8 \cdot \sum^{2018}_{n=1}3^{n-1}x^n$$
Find the number of roots $z$ of $P(x)$ with $|z| > 1$, counting multiplicity.
[b]p9.[/b] How many times does $01101$ appear as a not necessarily contiguous substring of $0101010101010101$? (Stated another way, how many ways can we choose digits from the second string, such that when read in order, these digits read $01101$?)
[b]p10.[/b] A perfect number is a positive integer that is equal to the sum of its proper positive divisors, that is, the sum of its positive divisors excluding the number itself. For example, $28$ is a perfect number because $1 + 2 + 4 + 7 + 14 = 28$. Let $n_i$ denote the ith smallest perfect number. Define $$f(x) =\sum_{i|n_x}\sum_{j|n_i}\frac{1}{j}$$ (where $\sum_{i|n_x}$ means we sum over all positive integers $i$ that are divisors of $n_x$). Compute $f(2)$, given there are at least $50 $perfect numbers.
[b]p11.[/b] Let $O$ be a circle with chord $AB$. The perpendicular bisector to $AB$ is drawn, intersecting $O$ at points $C$ and $D$, and intersecting $AB$ at the midpoint $E$. Finally, a circle $O'$ with diameter $ED$ is drawn, and intersects the chord $AD$ at the point $F$. Given $EC = 12$, and $EF = 7$, compute the radius of $O$.
[b]p12.[/b] Suppose $r$, $s$, $t$ are the roots of the polynomial $x^3 - 2x + 3$. Find $$\frac{1}{r^3 - 2}+\frac{1}{s^3 - 2}+\frac{1}{t^3 - 2}.$$
[b]p13.[/b] Let $a_1$, $a_2$,..., $a_{14}$ be points chosen independently at random from the interval $[0, 1]$. For $k = 1$, $2$,$...$, $7$, let $I_k$ be the closed interval lying between $a_{2k-1}$ and $a_{2k}$ (from the smaller to the larger). What is the probability that the intersection of $I_1$, $I_2$,$...$, $I_7$ is nonempty?
[b]p14.[/b] Consider all triangles $\vartriangle ABC$ with area $144\sqrt3$ such that $$\frac{\sin A \sin B \sin C}{
\sin A + \sin B + \sin C}=\frac14.$$ Over all such triangles $ABC$, what is the smallest possible perimeter?
[b]p15.[/b] Let $N$ be the number of sequences $(x_1,x_2,..., x_{2018})$ of elements of $\{1, 2,..., 2019\}$, not necessarily distinct, such that $x_1 + x_2 + ...+ x_{2018}$ is divisible by $2018$. Find the last three digits of $N$.
PS. You had better use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2014 Saint Petersburg Mathematical Olympiad, 7
Natural $a,b,c$ are pairwise prime. There is infinite table with one integer number in every cell. Sum of numbers in every $a \times a$, every $b \times b$, every $c \times c$ squares is even.
Is it true, that every number in table must be even?
2017 CMIMC Number Theory, 8
Let $N$ be the number of ordered triples $(a,b,c) \in \{1, \ldots, 2016\}^{3}$ such that $a^{2} + b^{2} + c^{2} \equiv 0 \pmod{2017}$. What are the last three digits of $N$?
2022 CMIMC, 2.8 1.4
Let $z$ be a complex number that satisfies the equation \[\frac{z-4}{z^2-5z+1} + \frac{2z-4}{2z^2-5z+1} + \frac{z-2}{z^2-3z+1} = \frac{3}{z}.\] Over all possible values of $z$, find the sum of the values of \[\left| \frac{1}{z^2-5z+1} + \frac{1}{2z^2-5z+1} + \frac{1}{z^2-3z+1} \right|.\]
[i]Proposed by Justin Hsieh[/i]
2022 Mid-Michigan MO, 5-6
[b]p1.[/b] An animal farm has geese and pigs with a total of $30$ heads and $84$ legs. Find the number of pigs and geese on this farm.
[b]p2.[/b] What is the maximum number of $1 \times 1$ squares of a $7 \times 7$ board that can be colored black in such a way that the black squares don’t touch each other even at their corners? Show your answer on the figure below and explain why it is not possible to get more black squares satisfying the given conditions.
[img]https://cdn.artofproblemsolving.com/attachments/d/5/2a0528428f4a5811565b94061486699df0577c.png[/img]
[b]p3.[/b] Decide whether it is possible to divide a regular hexagon into three equal not necessarily regular hexagons? A regular hexagon is a hexagon with equal sides and equal angles.
[img]https://cdn.artofproblemsolving.com/attachments/3/7/5d941b599a90e13a2e8ada635e1f1f3f234703.png[/img]
[b]p4.[/b] A rectangle is subdivided into a number of smaller rectangles. One observes that perimeters of all smaller rectangles are whole numbers. Is it possible that the perimeter of the original rectangle is not a whole number?
[b]p5.[/b] Place parentheses on the left hand side of the following equality to make it correct.
$$ 4 \times 12 + 18 : 6 + 3 = 50$$
[b]p6.[/b] Is it possible to cut a $16\times 9$ rectangle into two equal parts which can be assembled into a square?
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
1984 Vietnam National Olympiad, 1
$(a)$ Let $x, y$ be integers, not both zero. Find the minimum possible value of $|5x^2 + 11xy - 5y^2|$.
$(b)$ Find all positive real numbers $t$ such that $\frac{9t}{10}=\frac{[t]}{t - [t]}$.
1997 Tournament Of Towns, (548) 2
Prove that the equation $x^2 + y^2 - z^2 = 1997$ has infinitely many solutions in integers $x$, $y$ and $z$.
(N Vassiliev)
2013 IMO Shortlist, N1
Let $\mathbb{Z} _{>0}$ be the set of positive integers. Find all functions $f: \mathbb{Z} _{>0}\rightarrow \mathbb{Z} _{>0}$ such that
\[ m^2 + f(n) \mid mf(m) +n \]
for all positive integers $m$ and $n$.
1999 All-Russian Olympiad Regional Round, 10.8
Some natural numbers are marked. It is known that on every a segment of the number line of length $1999$ has a marked number. Prove that there is a pair of marked numbers, one of which is divisible by the other.
1998 May Olympiad, 1
Inés chose four different digits from the set $\{1,2,3,4,5,6,7,8,9\}$. He formed with them all possible four-digit numbers and added all those four-digit numbers. The result is $193314$. Find the four digits Inés chose.
2008 Singapore MO Open, 1
Find all pairs of positive integers $ (n,k)$ so that $ (n\plus{}1)^k\minus{}1\equal{}n!$.
2013 Singapore MO Open, 1
Let $a_1$, $a_2$, ... be a sequence of integers defined recursively by $a_1=2013$ and for $n \ge 1$, $a_{n+1}$ is the sum of the $2013$-th powers of the digits of $a_n$. Do there exist distinct positive integers $i$, $j$ such that $a_i=a_j$?
1999 Singapore Team Selection Test, 3
Let $f(x) = x^{1998} - x^{199}+x^{19}+ 1$. Prove that there is an infinite set of prime numbers, each dividing at least one of the integers $f(1), f(2), f(3), f(4), ...$
2007 Austria Beginners' Competition, 1
Prove that the number $9^n+8^n+7^n+6^n-4^n-3^n-2^n-1^n$ is divisible by $10$ for all non-negative $n$.
2008 China Team Selection Test, 3
Find all positive integers $ n$ having the following properties:in two-dimensional Cartesian coordinates, there exists a convex $ n$ lattice polygon whose lengths of all sides are odd numbers, and unequal to each other. (where lattice polygon is defined as polygon whose coordinates of all vertices are integers in Cartesian coordinates.)
ABMC Online Contests, 2021 Nov
[b]p1.[/b] Martin’s car insurance costed $\$6000$ before he switched to Geico, when he saved $15\%$ on car insurance. When Mayhem switched to Allstate, he, a safe driver, saved $40\%$ on car insurance. If Mayhem and Martin are now paying the same amount for car insurance, how much was Mayhem paying before he switched to Allstate?
[b]p2.[/b] The $7$-digit number $N$ can be written as $\underline{A} \,\, \underline{2} \,\,\underline{0} \,\,\underline{B} \,\,\underline{2} \,\, \underline{1} \,\,\underline{5}$. How many values of $N$ are divisible by $9$?
[b]p3.[/b] The solutions to the equation $x^2-18x-115 = 0$ can be represented as $a$ and $b$. What is $a^2+2ab+b^2$?
[b]p4.[/b] The exterior angles of a regular polygon measure to $4$ degrees. What is a third of the number of sides of this polygon?
[b]p5.[/b] Charlie Brown is having a thanksgiving party.
$\bullet$ He wants one turkey, with three different sizes to choose from.
$\bullet$ He wants to have two or three vegetable dishes, when he can pick from Mashed Potatoes, Saut´eed Brussels Sprouts, Roasted Butternut Squash, Buttery Green Beans, and Sweet Yams;
$\bullet$ He wants two desserts out of Pumpkin Pie, Apple Pie, Carrot Cake, and Cheesecake.
How many different combinations of menus are there?
[b]p6.[/b] In the diagram below, $\overline{AD} \cong \overline{CD}$ and $\vartriangle DAB$ is a right triangle with $\angle DAB = 90^o$. Given that the radius of the circle is $6$ and $m \angle ADC = 30^o$, if the length of minor arc $AB$ is written as $a\pi$, what is $a$?
[img]https://cdn.artofproblemsolving.com/attachments/d/9/ea57032a30c16f4402886af086064261d6828b.png[/img]
[b]p7.[/b] This Halloween, Owen and his two friends dressed up as guards from Squid Game. They needed to make three masks, which were black circles with a white equilateral triangle, circle, or square inscribed in their upper halves. Resourcefully, they used black paper circles with a radius of $5$ inches and white tape to create these masks. Ignoring the width of the tape, how much tape did they use? If the length can be expressed $a\sqrt{b}+c\sqrt{d}+ \frac{e}{f} \pi$ such that $b$ and $d$ are not divisible by the square of any prime, and $e$ and $f$ are relatively prime, find $a + b + c + d + e + f$.
[img]https://cdn.artofproblemsolving.com/attachments/0/c/bafe3f9939bd5767ba5cf77a51031dd32bbbec.png[/img]
[b]p8.[/b] Given $LCM (10^8, 8^{10}, n) = 20^{15}$, where $n$ is a positive integer, find the total number of possible values of $n$.
[b]p9.[/b] If one can represent the infinite progression $\frac{1}{11} + \frac{2}{13} + \frac{3}{121} + \frac{4}{169} + \frac{5}{1331} + \frac{6}{2197}+ ...$ as $\frac{a}{b}$ , where $a$ and $b$ are relatively prime positive integers, what is $a$?
[b]p10.[/b] Consider a tiled $3\times 3$ square without a center tile. How many ways are there to color the squares such that no two colored squares are adjacent (vertically or horizontally)? Consider rotations of an configuration to be the same, and consider the no-color configuration to be a coloring.
[b]p11.[/b] Let $ABC$ be a triangle with $AB = 4$ and $AC = 7$. Let $AD$ be an angle bisector of triangle $ABC$. Point $M$ is on $AC$ such that $AD$ intersects $BM$ at point $P$, and $AP : PD = 3 : 1$. If the ratio $AM : MC$ can be expressed as $\frac{a}{b}$ such that $a$, $b$ are relatively prime positive integers, find $a + b$.
[b]p12.[/b] For a positive integer $n$, define $f(n)$ as the number of positive integers less than or equal to $n$ that are coprime with $n$. For example, $f(9) = 6$ because $9$ does not have any common divisors with $1$, $2$, $4$, $5$, $7$, or $8$. Calculate: $$\sum^{100}_{i=2} \left( 29^{f(i)}\,\,\, mod \,\,i \right).$$
[b]p13.[/b] Let $ABC$ be an equilateral triangle. Let $P$ be a randomly selected point in the incircle of $ABC$. Find $a+b+c+d$ if the probability that $\angle BPC$ is acute can be expressed as $\frac{a\sqrt{b} -c\pi}{d\pi }$ for positive integers $a$, $b$, $c$, $d$ where $gcd(a, c, d) = 1$ and $b$ is not divisible by the square of any prime.
[b]p14.[/b] When the following expression is simplified by expanding then combining like terms, how many terms are in the resulting expression? $$(a + b + c + d)^{100} + (a + b - c - d)^{100}$$
[b]p15.[/b] Jerry has a rectangular box with integral side lengths. If $3$ units are added to each side of the box, the volume of the box is tripled. What is the largest possible volume of this box?
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2004 Spain Mathematical Olympiad, Problem 4
Does there exist such a power of ${2}$, that when written in the decimal system its digits are all different than zero and it is possible to reorder the other digits to form another power of ${2}$? Justify your answer.