This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15460

2008 USAMO, 1

Prove that for each positive integer $ n$, there are pairwise relatively prime integers $ k_0,k_1,\ldots,k_n$, all strictly greater than $ 1$, such that $ k_0k_1\ldots k_n\minus{}1$ is the product of two consecutive integers.

2000 All-Russian Olympiad, 2

Prove that one can partition the set of natural numbers into $100$ nonempty subsets such that among any three natural numbers $a$, $b$, $c$ satisfying $a+99b=c$, there are two that belong to the same subset.

2012 International Zhautykov Olympiad, 3

Find all integer solutions of the equation the equation $2x^2-y^{14}=1$.

2010 Tuymaada Olympiad, 2

For a given positive integer $n$, it's known that there exist $2010$ consecutive positive integers such that none of them is divisible by $n$ but their product is divisible by $n$. Prove that there exist $2004$ consecutive positive integers such that none of them is divisible by $n$ but their product is divisible by $n$.

2021 Thailand Mathematical Olympiad, 9

Let $S$ be a set of positive integers such that if $a$ and $b$ are elements of $S$ such that $a<b$, then $b-a$ divides the least common multiple of $a$ and $b$, and the quotient is an element of $S$. Prove that the cardinality of $S$ is less than or equal to $2$.

1975 IMO, 2

Let $a_{1}, \ldots, a_{n}$ be an infinite sequence of strictly positive integers, so that $a_{k} < a_{k+1}$ for any $k.$ Prove that there exists an infinity of terms $ a_{m},$ which can be written like $a_m = x \cdot a_p + y \cdot a_q$ with $x,y$ strictly positive integers and $p \neq q.$

2024 Brazil EGMO TST, 1

Let \( \mathbb{N} \) be the set of all positive integers. We say that a function \( f: \mathbb{N} \to \mathbb{N} \) is Georgian if \( f(1) = 1 \) and, for every positive integer \( n \), there exists a positive integer \( k \) such that \[ f^{(k)}(n) = 1, \quad \text{where } f^{(k)} = f \circ f \cdots \circ f \quad \text{(applied } k \text{ times)}. \] If \( f \) is a Georgian function, we define, for each positive integer \( n \), \( \text{ord}(n) \) as the smallest positive integer \( m \) such that \( f^{(m)}(n) = 1 \). Determine all positive real numbers \( c \) for which there exists a Georgian function such that, for every positive integer \( n \geq 2024 \), it holds that \( \text{ord}(n) \geq cn - 1 \).

2023 Pan-American Girls’ Mathematical Olympiad, 1

An integer \(n \geq 2\) is said to be [i]tuanis[/i] if, when you add the smallest prime divisor of \(n\) and the largest prime divisor of \(n\) (these divisors can be the same), you obtain an odd result. Calculate the sum of all [i]tuanis[/i] numbers that are less or equal to \(2023\).

2005 India IMO Training Camp, 2

Let $\tau(n)$ denote the number of positive divisors of the positive integer $n$. Prove that there exist infinitely many positive integers $a$ such that the equation $ \tau(an)=n $ does not have a positive integer solution $n$.

1995 Tournament Of Towns, (441) 1

Sonia has $10$, $15$ and $20$ cent stamps with total face value of $\$5$. She has $30$ stamps altogether. Prove that she has more $20$ cent stamps than $10$ cent stamps.

2010 AMC 12/AHSME, 3

A ticket to a school play costs $ x$ dollars, where $ x$ is a whole number. A group of 9th graders buys tickets costing a total of $ \$48$, and a group of 10th graders buys tickets costing a total of $ \$64$. How many values of $ x$ are possible? $ \textbf{(A)}\ 1\qquad\textbf{(B)}\ 2\qquad\textbf{(C)}\ 3\qquad\textbf{(D)}\ 4\qquad\textbf{(E)}\ 5$

2004 Abels Math Contest (Norwegian MO), 1a

If $m$ is a positive integer, prove that $2^m$ cannot be written as a sum of two or more consecutive natural numbers.

Oliforum Contest II 2009, 1

Let $ \sigma(\cdot): \mathbb{N}_0 \to \mathbb{N}_0$ be the function from every positive integer $ n$ to the sum of divisors $ \sum_{d \mid n}{d}$ (i.e. $ \sigma(6) \equal{} 6 \plus{} 3 \plus{} 2 \plus{} 1$ and $ \sigma(8) \equal{} 8 \plus{} 4 \plus{} 2 \plus{} 1$). Find all primes $ p$ such that $ p \mid \sigma(p \minus{} 1)$. [i](Salvatore Tringali)[/i]

2009 All-Russian Olympiad Regional Round, 10.5

Positive integer $m$ is such that the sum of decimal digits of $2^m$ equals 8. Can the last digit of $2^m$ be equal 6? (Author: V. Senderov)

2014 Chile National Olympiad, 4

Prove that for every integer $n$ the expression $n^3-9n + 27$ is not divisible by $81$.

1971 IMO, 3

Prove that we can find an infinite set of positive integers of the from $2^n-3$ (where $n$ is a positive integer) every pair of which are relatively prime.

2009 All-Russian Olympiad Regional Round, 11.7

$a$, $b$ and $c$ are positive integers with $\textrm{gcd}(a,b,c)=1$. Is it true that there exist a positive integer $n$ such that $a^k+b^k+c^k$ is not divisible by $2^n$ for all $k$?

2007 Balkan MO Shortlist, A7

Find all positive integers $n$ such that there exist a permutation $\sigma$ on the set $\{1,2,3, \ldots, n\}$ for which \[\sqrt{\sigma(1)+\sqrt{\sigma(2)+\sqrt{\ldots+\sqrt{\sigma(n-1)+\sqrt{\sigma(n)}}}}}\] is a rational number.

2016 Saudi Arabia GMO TST, 3

Find all positive integer $n$ such that there exists a permutation $(a_1, a_2,...,a_n)$ of $(1, 2,3,..., n)$ satisfying the condition: $a_1 + a_2 +... + a_k$ is divisible by $k$ for each $k = 1, 2,3,..., n$.

2007 USA Team Selection Test, 4

Determine whether or not there exist positive integers $ a$ and $ b$ such that $ a$ does not divide $ b^n \minus{} n$ for all positive integers $ n$.

1999 AIME Problems, 14

Point $P$ is located inside traingle $ABC$ so that angles $PAB, PBC,$ and $PCA$ are all congruent. The sides of the triangle have lengths $AB=13, BC=14,$ and $CA=15,$ and the tangent of angle $PAB$ is $m/n,$ where $m$ and $n$ are relatively prime positive integers. Find $m+n.$

1970 IMO, 1

Find all positive integers $n$ such that the set $\{n,n+1,n+2,n+3,n+4,n+5\}$ can be partitioned into two subsets so that the product of the numbers in each subset is equal.

MBMT Guts Rounds, 2019

[hide=D stands for Descartes, L stands for Leibniz]they had two problem sets under those two names[/hide] [u]Set 1[/u] [b]D.1 / L.1[/b] Find the units digit of $3^{1^{3^{3^7}}}$. [b]D.2[/b] Find the positive solution to the equation $x^3 - x^2 = x - 1$. [b]D.3[/b] Points $A$ and $B$ lie on a unit circle centered at O and are distance $1$ apart. What is the degree measure of $\angle AOB$? [b]D.4[/b] A number is a perfect square if it is equal to an integer multiplied by itself. How many perfect squares are there between $1$ and $2019$, inclusive? [b]D.5[/b] Ted has four children of ages $10$, $12$, $15$, and $17$. In fifteen years, the sum of the ages of his children will be twice Ted’s age in fifteen years. How old is Ted now? [u]Set 2[/u] [b]D.6[/b] Mr. Schwartz is on the show Wipeout, and is standing on the first of $5$ balls, all in a row. To reach the finish, he has to jump onto each of the balls and collect the prize on the final ball. The probability that he makes a jump from a ball to the next is $1/2$, and if he doesn’t make the jump he will wipe out and no longer be able to finish. Find the probability that he will finish. [b]D.7 / L. 5[/b] Kevin has written $5$ MBMT questions. The shortest question is $5$ words long, and every other question has exactly twice as many words as a different question. Given that no two questions have the same number of words, how many words long is the longest question? [b]D.8 / L. 3[/b] Square $ABCD$ with side length $1$ is rolled into a cylinder by attaching side $AD$ to side $BC$. What is the volume of that cylinder? [b]D.9 / L.4[/b] Haydn is selling pies to Grace. He has $4$ pumpkin pies, $3$ apple pies, and $1$ blueberry pie. If Grace wants $3$ pies, how many different pie orders can she have? [b]D.10[/b] Daniel has enough dough to make $8$ $12$-inch pizzas and $12$ $8$-inch pizzas. However, he only wants to make $10$-inch pizzas. At most how many $10$-inch pizzas can he make? [u]Set 3[/u] [b]D.11 / L.2[/b] A standard deck of cards contains $13$ cards of each suit (clubs, diamonds, hearts, and spades). After drawing $51$ cards from a randomly ordered deck, what is the probability that you have drawn an odd number of clubs? [b]D.12 / L. 7[/b] Let $s(n)$ be the sum of the digits of $n$. Let $g(n)$ be the number of times s must be applied to n until it has only $1$ digit. Find the smallest n greater than $2019$ such that $g(n) \ne g(n + 1)$. [b]D.13 / L. 8[/b] In the Montgomery Blair Meterology Tournament, individuals are ranked (without ties) in ten categories. Their overall score is their average rank, and the person with the lowest overall score wins. Alice, one of the $2019$ contestants, is secretly told that her score is $S$. Based on this information, she deduces that she has won first place, without tying with anyone. What is the maximum possible value of $S$? [b]D.14 / L. 9[/b] Let $A$ and $B$ be opposite vertices on a cube with side length $1$, and let $X$ be a point on that cube. Given that the distance along the surface of the cube from $A$ to $X$ is $1$, find the maximum possible distance along the surface of the cube from $B$ to $X$. [b]D.15[/b] A function $f$ with $f(2) > 0$ satisfies the identity $f(ab) = f(a) + f(b)$ for all $a, b > 0$. Compute $\frac{f(2^{2019})}{f(23)}$. PS. You should use hide for answers. D.1-15 / L1-9 problems have been collected [url=https://artofproblemsolving.com/community/c3h2790795p24541357]here [/url] and L10,16-30 [url=https://artofproblemsolving.com/community/c3h2790825p24541816]here[/url]. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2019 Nigerian Senior MO Round 4, 4

We consider the real sequence ($x_n$) defined by $x_0=0, x_1=1$ and $x_{n+2}=3x_{n+1}-2 x_{n}$ for $n=0,1,2,...$ We define the sequence ($y_n$) by $y_n=x^2_n+2^{n+2}$ for every nonnegative integer $n$. Prove that for every $n>0, y_n$ is the square of an odd integer.

2012 Indonesia TST, 4

The sequence $a_i$ is defined as $a_1 = 1$ and \[a_n = a_{\left\lfloor \dfrac{n}{2} \right\rfloor} + a_{\left\lfloor \dfrac{n}{3} \right\rfloor} + a_{\left\lfloor \dfrac{n}{4} \right\rfloor} + \cdots + a_{\left\lfloor \dfrac{n}{n} \right\rfloor} + 1\] for every positive integer $n > 1$. Prove that there are infinitely many values of $n$ such that $a_n \equiv n \mod 2012$.