This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15460

2022 CMIMC, 2.5

Alan is assigning values to lattice points on the 3d coordinate plane. First, Alan computes the roots of the cubic $20x^3-22x^2+2x+1$ and finds that they are $\alpha$, $\beta$, and $\gamma$. He finds out that each of these roots satisfy $|\alpha|,|\beta|,|\gamma|\leq 1$ On each point $(x,y,z)$ where $x,y,$ and $z$ are all nonnegative integers, Alan writes down $\alpha^x\beta^y\gamma^z$. What is the value of the sum of all numbers he writes down? [i]Proposed by Alan Abraham[/i]

2003 CentroAmerican, 6

Say a number is [i]tico[/i] if the sum of it's digits is a multiple of $2003$. $\text{(i)}$ Show that there exists a positive integer $N$ such that the first $2003$ multiples, $N,2N,3N,\ldots 2003N$ are all tico. $\text{(ii)}$ Does there exist a positive integer $N$ such that all it's multiples are tico?

1990 Austrian-Polish Competition, 4

Find all solutions in positive integers to: $$\begin{cases} x_1^4 + 14x_1x_2 + 1 = y_1^4 \\ x_2^4 + 14x_2x_3 + 1 = y_2^4 \\ ... \\ x_n^4 + 14x_nx_1 + 1 = y_n^4 \end{cases}$$

2014 NIMO Problems, 4

Let $a$, $b$, $c$ be positive reals for which \begin{align*} (a+b)(a+c) &= bc + 2 \\ (b+c)(b+a) &= ca + 5 \\ (c+a)(c+b) &= ab + 9 \end{align*} If $abc = \frac{m}{n}$ for relatively prime positive integers $m$ and $n$, compute $100m+n$. [i]Proposed by Evan Chen[/i]

MathLinks Contest 6th, 2.2

Let $a_1, a_2, ..., a_{n-1}$ be $n - 1$ consecutive positive integers in increasing order such that $k$ ${n \choose k}$ $\equiv 0$ (mod $a_k$), for all $k \in \{1, 2, ... , n - 1\}$. Find the possible values of $a_1$.

2021 Mediterranean Mathematics Olympiad, 2

For every sequence $p_1<p_2<\cdots<p_8$ of eight prime numbers, determine the largest integer $N$ for which the following equation has no solution in positive integers $x_1,\ldots,x_8$: $$p_1\, p_2\, \cdots\, p_8 \left( \frac{x_1}{p_1}+ \frac{x_2}{p_2}+ ~\cdots~ +\frac{x_8}{p_8} \right) ~~=~~ N $$ [i]Proposed by Gerhard Woeginger, Austria[/i]

2017 Taiwan TST Round 3, 2

Choose a rational point $P_0(x_p,y_p)$ arbitrary on ellipse $C:x^2+2y^2=2098$. Define $P_1,P_2,\cdots$ recursively by the following rules: $(1)$ Choose a lattice point $Q_i=(x_i,y_i)\notin C$ such that $|x_i|<50$ and $|y_i|<50$. $(2)$ Line $P_iQ_i$ intersects $C$ at another point $P_{i+1}$. Prove that for any point $P_0$ we can choose suitable points $Q_0,Q_1,\cdots$ such that $\exists k\in\mathbb{N}\cup\{0\}$, $\overline{OP_k}^2=2017$.

2018 Spain Mathematical Olympiad, 1

Find all positive integers $x$ such that $2x+1$ is a perfect square but none of the integers $2x+2, 2x+3, \ldots, 3x+2$ are perfect squares.

LMT Guts Rounds, 2022 S

[u]Round 6[/u] [b]p16.[/b] Given that $x$ and $y$ are positive real numbers such that $x^3+y = 20$, the maximum possible value of $x + y$ can be written as $\frac{a\sqrt{b}}{c}$ +d where $a$, $b$, $c$, and $d$ are positive integers such that $gcd(a,c) = 1$ and $b$ is square-free. Find $a +b +c +d$. [b]p17.[/b] In $\vartriangle DRK$ , $DR = 13$, $DK = 14$, and $RK = 15$. Let $E$ be the intersection of the altitudes of $\vartriangle DRK$. Find the value of $\lfloor DE +RE +KE \rfloor$. [b]p18.[/b] Subaru the frog lives on lily pad $1$. There is a line of lily pads, numbered $2$, $3$, $4$, $5$, $6$, and $7$. Every minute, Subaru jumps from his current lily pad to a lily pad whose number is either $1$ or $2$ greater, chosen at random from valid possibilities. There are alligators on lily pads $2$ and $5$. If Subaru lands on an alligator, he dies and time rewinds back to when he was on lily pad number $1$. Find the expected number of jumps it takes Subaru to reach pad $7$. [u]Round 7[/u] This set has problems whose answers depend on one another. [b]p19.[/b] Let $B$ be the answer to Problem $20$ and let $C$ be the answer to Problem $21$. Given that $$f (x) = x^3-Bx-C = (x-r )(x-s)(x-t )$$ where $r$, $s$, and $t$ are complex numbers, find the value of $r^2+s^2+t^2$. [b]p20.[/b] Let $A$ be the answer to Problem $19$ and let $C$ be the answer to Problem $21$. Circles $\omega_1$ and $\omega_2$ meet at points $X$ and $Y$ . Let point $P \ne Y$ be the point on $\omega_1$ such that $PY$ is tangent to $\omega_2$, and let point $Q \ne Y$ be the point on $\omega_2$ such that $QY$ is tangent to $\omega_1$. Given that $PX = A$ and $QX =C$, find $XY$ . [b]p21.[/b] Let $A$ be the answer to Problem $19$ and let $B$ be the answer to Problem $20$. Given that the positive difference between the number of positive integer factors of $A^B$ and the number of positive integer factors of $B^A$ is $D$, and given that the answer to this problem is an odd prime, find $\frac{D}{B}-40$. [u]Round 8[/u] [b]p22.[/b] Let $v_p (n)$ for a prime $p$ and positive integer $n$ output the greatest nonnegative integer $x$ such that $p^x$ divides $n$. Find $$\sum^{50}_{i=1}\sum^{i}_{p=1} { v_p (i )+1 \choose 2},$$ where the inner summation only sums over primes $p$ between $1$ and $i$ . [b]p23.[/b] Let $a$, $b$, and $c$ be positive real solutions to the following equations. $$\frac{2b^2 +2c^2 -a^2}{4}= 25$$ $$\frac{2c^2 +2a^2 -b^2}{4}= 49$$ $$\frac{2a^2 +2b^2 -c^2}{4}= 64$$ The area of a triangle with side lengths $a$, $b$, and $c$ can be written as $\frac{x\sqrt{y}}{z}$ where $x$ and $z$ are relatively prime positive integers and $y$ is square-free. Find $x + y +z$. [b]p24.[/b] Alan, Jiji, Ina, Ryan, and Gavin want to meet up. However, none of them know when to go, so they each pick a random $1$ hour period from $5$ AM to $11$ AM to meet up at Alan’s house. Find the probability that there exists a time when all of them are at the house at one time. [b]Round 9 [/b] [b]p25.[/b] Let $n$ be the number of registered participantsin this $LMT$. Estimate the number of digits of $\left[ {n \choose 2} \right]$ in base $10$. If your answer is $A$ and the correct answer is $C$, then your score will be $$\left \lfloor \max \left( 0,20 - \left| \ln \left( \frac{A}{C}\right) \cdot 5 \right|\right| \right \rfloor.$$ [b]p26.[/b] Let $\gamma$ be theminimum value of $x^x$ over all real numbers $x$. Estimate $\lfloor 10000\gamma \rfloor$. If your answer is $A$ and the correct answer is $C$, then your score will be $$\left \lfloor \max \left( 0,20 - \left| \ln \left( \frac{A}{C}\right) \cdot 5 \right|\right| \right \rfloor.$$ [b]p27.[/b] Let $$E = \log_{13} 1+log_{13}2+log_{13}3+...+log_{13}513513.$$ Estimate $\lfloor E \rfloor$. If your answer is $A$ and the correct answer is $C$, your score will be $$\left \lfloor \max \left( 0,20 - \left| \ln \left( \frac{A}{C}\right) \cdot 5 \right|\right| \right \rfloor.$$ PS. You should use hide for answers. Rounds 1-5 have been posted [url=https://artofproblemsolving.com/community/c3h3167127p28823220]here[/url]. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2003 VJIMC, Problem 1

Let $d(k)$ denote the number of natural divisors of a natural number $k$. Prove that for any natural number $n_0$ the sequence $\left\{d(n^2+1)\right\}^\infty_{n=n_0}$ is not strictly monotone.

2015 Abels Math Contest (Norwegian MO) Final, 4

a. Determine all nonnegative integers $x$ and $y$ so that $3^x + 7^y$ is a perfect square and $y$ is even. b. Determine all nonnegative integers $x$ and $y$ so that $3^x + 7^y$ is a perfect square and $y$ is odd

2017 Dutch BxMO TST, 2

Let define a function $f: \mathbb{N} \rightarrow \mathbb{Z}$ such that : $i)$$f(p)=1$ for all prime numbers $p$. $ii)$$f(xy)=xf(y)+yf(x)$ for all positive integers $x,y$ find the smallest $n \geq 2016$ such that $f(n)=n$

II Soros Olympiad 1995 - 96 (Russia), 10.5

Find all pairs of natural numbers $x$ and $y$ for which $x^2+3y$ and $y^2+3x$ are simultaneously squares of natural numbers.

2006 Iran MO (3rd Round), 3

$L$ is a fullrank lattice in $\mathbb R^{2}$ and $K$ is a sub-lattice of $L$, that $\frac{A(K)}{A(L)}=m$. If $m$ is the least number that for each $x\in L$, $mx$ is in $K$. Prove that there exists a basis $\{x_{1},x_{2}\}$ for $L$ that $\{x_{1},mx_{2}\}$ is a basis for $K$.

2014 Contests, 2

$p$ is a prime. Find the all $(m,n,p)$ positive integer triples satisfy $m^3+7p^2=2^n$.

2015 Belarus Team Selection Test, 1

Find all positive integers $n$ such that $n=q(q^2-q-1)=r(2r+1)$ for some primes $q$ and $r$. B.Gilevich

2022 Math Hour Olympiad, 8-10

[u]Round 1[/u] [b]p1.[/b] Alex is writing a sequence of $A$’s and $B$’s on a chalkboard. Any $20$ consecutive letters must have an equal number of $A$’s and $B$’s, but any 22 consecutive letters must have a different number of $A$’s and $B$’s. What is the length of the longest sequence Alex can write?. [b]p2.[/b] A positive number is placed on each of the $10$ circles in this picture. It turns out that for each of the nine little equilateral triangles, the number on one of its corners is the sum of the numbers on the other two corners. Is it possible that all $10$ numbers are different? [img]https://cdn.artofproblemsolving.com/attachments/b/f/c501362211d1c2a577e718d2b1ed1f1eb77af1.png[/img] [b]p3.[/b] Pablo and Nina take turns entering integers into the cells of a $3 \times 3$ table. Pablo goes first. The person who fills the last empty cell in a row must make the numbers in that row add to $0$. Can Nina ensure at least two of the columns have a negative sum, no matter what Pablo does? [b]p4. [/b]All possible simplified fractions greater than $0$ and less than $1$ with denominators less than or equal to $100$ are written in a row with a space before each number (including the first). Zeke and Qing play a game, taking turns choosing a blank space and writing a “$+$” or “$-$” sign in it. Zeke goes first. After all the spaces have been filled, Zeke wins if the value of the resulting expression is an integer. Can Zeke win no matter what Qing does? [img]https://cdn.artofproblemsolving.com/attachments/3/6/15484835686fbc2aa092e8afc6f11cd1d1fb88.png[/img] [b]p5.[/b] A police officer patrols a town whose map is shown. The officer must walk down every street segment at least once and return to the starting point, only changing direction at intersections and corners. It takes the officer one minute to walk each segment. What is the fastest the officer can complete a patrol? [img]https://cdn.artofproblemsolving.com/attachments/0/c/d827cf26c8eaabfd5b0deb92612a6e6ebffb47.png[/img] [u]Round 2[/u] [b]p6.[/b] Prove that among any $3^{2022}$ integers, it is possible to find exactly $3^{2021}$ of them whose sum is divisible by $3^{2021}$. [b]p7.[/b] Given a list of three numbers, a zap consists of picking two of the numbers and decreasing each of them by their average. For example, if the list is $(5, 7, 10)$ and you zap $5$ and $10$, whose average is $7.5$, the new list is $(-2.5, 7, 2.5)$. Is it possible to start with the list $(3, 1, 4)$ and, through some sequence of zaps, end with a list in which the sum of the three numbers is $0$? PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2007 Iran MO (3rd Round), 5

Look at these fractions. At firs step we have $ \frac{0}{1}$ and $ \frac{1}{0}$, and at each step we write $ \frac{a\plus{}b}{c\plus{}d}$ between $ \frac{a}{b}$ and $ \frac{c}{d}$, and we do this forever \[ \begin{array}{ccccccccccccccccccccccccc}\frac{0}{1}&&&&&&&&\frac{1}{0}\\ \frac{0}{1}&&&&\frac{1}{1}&&&&\frac{1}{0}\\ \frac{0}{1}&&\frac{1}{2}&&\frac{1}{1}&&\frac{2}{1}&&\frac{1}{0}\\ \frac{0}{1}&\frac{1}{3}&\frac{1}{2}&\frac{2}{3}&\frac{1}{1}&\frac{3}{2}&\frac{2}{1}&\frac{3}{1}&\frac{1}{0}\\ &&&&\dots\end{array}\] a) Prove that each of these fractions is irreducible. b) In the plane we have put infinitely many circles of diameter 1, over each integer on the real line, one circle. The inductively we put circles that each circle is tangent to two adjacent circles and real line, and we do this forever. Prove that points of tangency of these circles are exactly all the numbers in part a(except $ \frac{1}{0}$). [img]http://i2.tinypic.com/4m8tmbq.png[/img] c) Prove that in these two parts all of positive rational numbers appear. If you don't understand the numbers, look at [url=http://upload.wikimedia.org/wikipedia/commons/2/21/Arabic_numerals-en.svg]here[/url].

MOAA Gunga Bowls, 2020

[u]Set 6[/u] [b]B16.[/b] Let $\ell_r$ denote the line $x + ry + r^2 = 420$. Jeffrey draws the lines $\ell_a$ and $\ell_b$ and calculates their single intersection point. [b]B17.[/b] Let set $L$ consist of lines of the form $3x + 2ay = 60a + 48$ across all real constants a. For every line $\ell$ in $L$, the point on $\ell$ closest to the origin is in set $T$ . The area enclosed by the locus of all the points in $T$ can be expressed in the form nπ for some positive integer $n$. Compute $n$. [b]B18.[/b] What is remainder when the $2020$-digit number $202020 ... 20$ is divided by $275$? [u]Set 7[/u] [b]B19.[/b] Consider right triangle $\vartriangle ABC$ where $\angle ABC = 90^o$, $\angle ACB = 30^o$, and $AC = 10$. Suppose a beam of light is shot out from point $A$. It bounces off side $BC$ and then bounces off side $AC$, and then hits point $B$ and stops moving. If the beam of light travelled a distance of $d$, then compute $d^2$. [b]B20.[/b] Let $S$ be the set of all three digit numbers whose digits sum to $12$. What is the sum of all the elements in $S$? [b]B21.[/b] Consider all ordered pairs $(m, n)$ where $m$ is a positive integer and $n$ is an integer that satisfy $$m! = 3n^2 + 6n + 15,$$ where $m! = m \times (m - 1) \times ... \times 1$. Determine the product of all possible values of $n$. [u]Set 8[/u] [b]B22.[/b] Compute the number of ordered pairs of integers $(m, n)$ satisfying $1000 > m > n > 0$ and $6 \cdot lcm(m - n, m + n) = 5 \cdot lcm(m, n)$. [b]B23.[/b] Andrew is flipping a coin ten times. After every flip, he records the result (heads or tails). He notices that after every flip, the number of heads he had flipped was always at least the number of tails he had flipped. In how many ways could Andrew have flipped the coin? [b]B24.[/b] Consider a triangle $ABC$ with $AB = 7$, $BC = 8$, and $CA = 9$. Let $D$ lie on $\overline{AB}$ and $E$ lie on $\overline{AC}$ such that $BCED$ is a cyclic quadrilateral and $D, O, E$ are collinear, where $O$ is the circumcenter of $ABC$. The area of $\vartriangle ADE$ can be expressed as $\frac{m\sqrt{n}}{p}$, where $m$ and $p$ are relatively prime positive integers, and $n$ is a positive integer not divisible by the square of any prime. What is $m + n + p$? [u]Set 9[/u] [i]This set consists of three estimation problems, with scoring schemes described.[/i] [b]B25.[/b] Submit one of the following ten numbers: $$3 \,\,\,\, 6\,\,\,\, 9\,\,\,\, 12\,\,\,\, 15\,\,\,\, 18\,\,\,\, 21\,\,\,\, 24\,\,\,\, 27\,\,\,\, 30.$$ The number of points you will receive for this question is equal to the number you selected divided by the total number of teams that selected that number, then rounded up to the nearest integer. For example, if you and four other teams select the number $27$, you would receive $\left\lceil \frac{27}{5}\right\rceil = 6$ points. [b]B26.[/b] Submit any integer from $1$ to $1,000,000$, inclusive. The standard deviation $\sigma$ of all responses $x_i$ to this question is computed by first taking the arithmetic mean $\mu$ of all responses, then taking the square root of average of $(x_i -\mu)^2$ over all $i$. More, precisely, if there are $N$ responses, then $$\sigma =\sqrt{\frac{1}{N} \sum^N_{i=1} (x_i -\mu)^2}.$$ For this problem, your goal is to estimate the standard deviation of all responses. An estimate of $e$ gives $\max \{ \left\lfloor 130 ( min \{ \frac{\sigma }{e},\frac{e}{\sigma }\}^{3}\right\rfloor -100,0 \}$ points. [b]B27.[/b] For a positive integer $n$, let $f(n)$ denote the number of distinct nonzero exponents in the prime factorization of $n$. For example, $f(36) = f(2^2 \times 3^2) = 1$ and $f(72) = f(2^3 \times 3^2) = 2$. Estimate $N = f(2) + f(3) +.. + f(10000)$. An estimate of $e$ gives $\max \{30 - \lfloor 7 log_{10}(|N - e|)\rfloor , 0\}$ points. PS. You had better use hide for answers. First sets have been posted [url=https://artofproblemsolving.com/community/c4h2777391p24371239]here[/url]. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2013 Dutch IMO TST, 2

Determine all integers $n$ for which $\frac{4n-2}{n+5}$ is the square of a rational number.

2008 Thailand Mathematical Olympiad, 2

Find all positive integers $N$ with the following properties: (i) $N$ has at least two distinct prime factors, and (ii) if $d_1 < d_2 < d_3 < d_4$ are the four smallest divisors of $N$ then $N =d_1^2 + d_2 ^2+ d_3 ^2+ d_4^2$

Maryland University HSMC part II, 2012

[b]p1.[/b] (a) Suppose $101$ Dalmatians chase $2012$ squirrels. Each squirrel gets chased by at most one Dalmatian, and each Dalmatian chases at least one squirrel. Show that two Dalmatians chase the same number of squirrels. (b) What is the largest number of Dalmatians that can chase $2012$ squirrels in a way that each Dalmatian chases at least one squirrel and no two Dalmatians chase the same number of squirrels? [b]p2.[/b] Lucy and Linus play the following game. They start by putting the integers $1, 2, 3, ..., 2012$ in a hat. In each round of the game, Lucy and Linus each draw a number from the hat. If the two numbers are $a$ and $b$, they throw away these numbers and put the number $|a - b|$ back into the hat. After $2011$ rounds, there is only one number in the hat. If it is even, Lucy wins. If it is odd, Linus wins. (a) Prove that there is a sequence of drawings that makes Lucy win. (b) Prove that Lucy always wins. [b]p3.[/b] Suppose $x$ is a positive real number and $x^{1990}$, $x^{2001}$, and $x^{2012}$ differ by integers. Prove that $x$ is an integer. [b]p4.[/b] Suppose that each point in three-dimensional space is colored with one of five colors and suppose that each color is used at least once. Prove that there is some plane that contains at least four of the colors. [b]p5.[/b] Two circles, $C_1$ and $C_2$, are tangent at point $A$, with $C_1$ lying inside $C_2$ (and $C_1 \ne C_2$). The line through their centers intersects $C_1$ at $B_1$ and $C_2$ at $B_2$. A line $L$ is drawn through $A$ and it intersects $C_1$ at $P_1$ (with $P_1 \ne A$) and intersects $C_2$ at $P_2$ (with $P_2 \ne A$). The perpendicular from $P_2$ to the line $B_1B_2$ intersects the line $B_1B_2$ at $F$. Prove that if the line $P_1F$ is tangent to $C_1$ then $F$ is the midpoint of the line segment $B_1B_2$. [img]https://cdn.artofproblemsolving.com/attachments/9/e/4db59be9fa764d3e910a828ed3296907ca5657.png[/img] PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2018 Saudi Arabia GMO TST, 1

Let $n$ be an odd positive integer with $n > 1$ and let $a_1, a_2,... , a_n$ be positive integers such that gcd $(a_1, a_2,... , a_n) = 1$. Let $d$ = gcd $(a_1^n + a_1\cdot a_2 \cdot \cdot \cdot a_n, a_2^n + a_1\cdot a_2 \cdot \cdot \cdot a_n, ... , a_n^n + a_1\cdot a_2 \cdot \cdot \cdot a_n)$. Show that the possible values of $d$ are $d = 1, d = 2$

2003 AMC 10, 14

Let $ n$ be the largest integer that is the product of exactly $ 3$ distinct prime numbers, $ d$, $ e$, and $ 10d\plus{}e$, where $ d$ and $ e$ are single digits. What is the sum of the digits of $ n$? $ \textbf{(A)}\ 12 \qquad \textbf{(B)}\ 15 \qquad \textbf{(C)}\ 18 \qquad \textbf{(D)}\ 21 \qquad \textbf{(E)}\ 24$

2024 JHMT HS, 15

Let $\ell = 1$, $M = 23$, $N = 45$, and $u = 67$. Compute the number of ordered pairs of nonnegative integers $(X, Y)$ with $X \leq M - \ell$ and $Y \leq N + u$ such that the sum \[ \sum_{k=\ell}^{u} \binom{X + k}{M}\cdot\binom{Y - k}{N} \] is divisible by $89$ (for integers $a$ and $b$, define the binomial coefficient $\tbinom{a}{b}$ to be the number of $b$-element subsets of any given $a$-element set, which is $0$ when $a < 0$, $b < 0$, or $b > a$).