Found problems: 15460
2024 Azerbaijan BMO TST, 1
For positive integers $n$ and $k \geq 2$, define $E_k(n)$ as the greatest exponent $r$ such that $k^r$ divides $n!$. Prove that there are infinitely many $n$ such that $E_{10}(n) > E_9(n)$ and infinitely many $m$ such that $E_{10}(m) < E_9(m)$.
1998 Greece JBMO TST, 3
Prove that if the number $A = 111 \cdots 1$ ($n$ digits) is prime, then $n$ is prime. Is the converse true?
2005 CentroAmerican, 6
Let $n$ be a positive integer and $p$ a fixed prime. We have a deck of $n$ cards, numbered $1,\ 2,\ldots,\ n$ and $p$ boxes for put the cards on them. Determine all posible integers $n$ for which is possible to distribute the cards in the boxes in such a way the sum of the numbers of the cards in each box is the same.
2011 Romania National Olympiad, 4
A positive integer will be called [i]typical[/i] if the sum of its decimal digits is a multiple of $2011$.
a) Show that there are infinitely many [i]typical[/i] numbers, each having at least $2011$ multiples which are also typical numbers.
b) Does there exist a positive integer such that each of its multiples is typical?
2013 Indonesia MO, 6
A positive integer $n$ is called "strong" if there exists a positive integer $x$ such that $x^{nx} + 1$ is divisible by $2^n$.
a. Prove that $2013$ is strong.
b. If $m$ is strong, determine the smallest $y$ (in terms of $m$) such that $y^{my} + 1$ is divisible by $2^m$.
2005 Estonia National Olympiad, 4
A sequence of natural numbers $a_1, a_2, a_3,..$ is called [i]periodic modulo[/i] $n$ if there exists a positive integer $k$ such that, for any positive integer $i$, the terms $a_i$ and $a_{i+k}$ are equal modulo $n$. Does there exist a strictly increasing sequence of natural numbers that
a) is not periodic modulo finitely many positive integers and is periodic modulo all the other positive integers?
b) is not periodic modulo infinitely many positive integers and is periodic modulo infinitely many positive integers?
2017 China Team Selection Test, 5
Let $ \varphi(x)$ be a cubic polynomial with integer coefficients. Given that $ \varphi(x)$ has have 3 distinct real roots $u,v,w $ and $u,v,w $ are not rational number. there are integers $ a, b,c$ such that $u=av^2+bv+c$. Prove that $b^2 -2b -4ac - 7$ is a square number .
2018-IMOC, N5
Find all positive integers $k$ such that for every $n\in\mathbb N$, if there are $k$ factors (not necessarily distinct) of $n$ so that the sum of their squares is $n$, then there are $k$ factors (not necessarily distinct) of $n$ so that their sum is exactly $n$.
VMEO III 2006 Shortlist, N10
The notation $\phi (n)$ is the number of positive integers smaller than $n$ and coprime with $n$, $\pi (n)$ is the number of primes that do not exceed $n$. Prove that for any natural number $n > 1$, we have
$$\phi (n) \ge \frac{\pi (n)}{2}$$
2024 Harvard-MIT Mathematics Tournament, 2
Suppose $a$ and $b$ are positive integers. Isabella and Vidur both fill up an $a \times b$ table. Isabella fills it up with numbers $1, 2, . . . , ab$, putting the numbers $1, 2, . . . , b$ in the first row, $b + 1, b + 2, . . . , 2b$ in the second row, and so on. Vidur fills it up like a multiplication table, putting $ij$ in the cell in row $i$ and column $j$.
(Examples are shown for a $3 \times 4$ table below.)
[img]https://cdn.artofproblemsolving.com/attachments/6/8/a0855d790069ecd2cd709fbc5e70f21f1fa423.png[/img]
Isabella sums up the numbers in her grid, and Vidur sums up the numbers in his grid; the difference between these two quantities is $1200$. Compute $a + b$.
2017 Bosnia and Herzegovina EGMO TST, 3
For positive integer $n$ we define $f(n)$ as sum of all of its positive integer divisors (including $1$ and $n$). Find all positive integers $c$ such that there exists strictly increasing infinite sequence of positive integers $n_1, n_2,n_3,...$ such that for all $i \in \mathbb{N}$ holds $f(n_i)-n_i=c$
2018 PUMaC Number Theory B, 1
Find the largest prime factor of $8001$.
2021 ABMC., 2021 Nov
[b]p1.[/b] Martin’s car insurance costed $\$6000$ before he switched to Geico, when he saved $15\%$ on car insurance. When Mayhem switched to Allstate, he, a safe driver, saved $40\%$ on car insurance. If Mayhem and Martin are now paying the same amount for car insurance, how much was Mayhem paying before he switched to Allstate?
[b]p2.[/b] The $7$-digit number $N$ can be written as $\underline{A} \,\, \underline{2} \,\,\underline{0} \,\,\underline{B} \,\,\underline{2} \,\, \underline{1} \,\,\underline{5}$. How many values of $N$ are divisible by $9$?
[b]p3.[/b] The solutions to the equation $x^2-18x-115 = 0$ can be represented as $a$ and $b$. What is $a^2+2ab+b^2$?
[b]p4.[/b] The exterior angles of a regular polygon measure to $4$ degrees. What is a third of the number of sides of this polygon?
[b]p5.[/b] Charlie Brown is having a thanksgiving party.
$\bullet$ He wants one turkey, with three different sizes to choose from.
$\bullet$ He wants to have two or three vegetable dishes, when he can pick from Mashed Potatoes, Saut´eed Brussels Sprouts, Roasted Butternut Squash, Buttery Green Beans, and Sweet Yams;
$\bullet$ He wants two desserts out of Pumpkin Pie, Apple Pie, Carrot Cake, and Cheesecake.
How many different combinations of menus are there?
[b]p6.[/b] In the diagram below, $\overline{AD} \cong \overline{CD}$ and $\vartriangle DAB$ is a right triangle with $\angle DAB = 90^o$. Given that the radius of the circle is $6$ and $m \angle ADC = 30^o$, if the length of minor arc $AB$ is written as $a\pi$, what is $a$?
[img]https://cdn.artofproblemsolving.com/attachments/d/9/ea57032a30c16f4402886af086064261d6828b.png[/img]
[b]p7.[/b] This Halloween, Owen and his two friends dressed up as guards from Squid Game. They needed to make three masks, which were black circles with a white equilateral triangle, circle, or square inscribed in their upper halves. Resourcefully, they used black paper circles with a radius of $5$ inches and white tape to create these masks. Ignoring the width of the tape, how much tape did they use? If the length can be expressed $a\sqrt{b}+c\sqrt{d}+ \frac{e}{f} \pi$ such that $b$ and $d$ are not divisible by the square of any prime, and $e$ and $f$ are relatively prime, find $a + b + c + d + e + f$.
[img]https://cdn.artofproblemsolving.com/attachments/0/c/bafe3f9939bd5767ba5cf77a51031dd32bbbec.png[/img]
[b]p8.[/b] Given $LCM (10^8, 8^{10}, n) = 20^{15}$, where $n$ is a positive integer, find the total number of possible values of $n$.
[b]p9.[/b] If one can represent the infinite progression $\frac{1}{11} + \frac{2}{13} + \frac{3}{121} + \frac{4}{169} + \frac{5}{1331} + \frac{6}{2197}+ ...$ as $\frac{a}{b}$ , where $a$ and $b$ are relatively prime positive integers, what is $a$?
[b]p10.[/b] Consider a tiled $3\times 3$ square without a center tile. How many ways are there to color the squares such that no two colored squares are adjacent (vertically or horizontally)? Consider rotations of an configuration to be the same, and consider the no-color configuration to be a coloring.
[b]p11.[/b] Let $ABC$ be a triangle with $AB = 4$ and $AC = 7$. Let $AD$ be an angle bisector of triangle $ABC$. Point $M$ is on $AC$ such that $AD$ intersects $BM$ at point $P$, and $AP : PD = 3 : 1$. If the ratio $AM : MC$ can be expressed as $\frac{a}{b}$ such that $a$, $b$ are relatively prime positive integers, find $a + b$.
[b]p12.[/b] For a positive integer $n$, define $f(n)$ as the number of positive integers less than or equal to $n$ that are coprime with $n$. For example, $f(9) = 6$ because $9$ does not have any common divisors with $1$, $2$, $4$, $5$, $7$, or $8$. Calculate: $$\sum^{100}_{i=2} \left( 29^{f(i)}\,\,\, mod \,\,i \right).$$
[b]p13.[/b] Let $ABC$ be an equilateral triangle. Let $P$ be a randomly selected point in the incircle of $ABC$. Find $a+b+c+d$ if the probability that $\angle BPC$ is acute can be expressed as $\frac{a\sqrt{b} -c\pi}{d\pi }$ for positive integers $a$, $b$, $c$, $d$ where $gcd(a, c, d) = 1$ and $b$ is not divisible by the square of any prime.
[b]p14.[/b] When the following expression is simplified by expanding then combining like terms, how many terms are in the resulting expression? $$(a + b + c + d)^{100} + (a + b - c - d)^{100}$$
[b]p15.[/b] Jerry has a rectangular box with integral side lengths. If $3$ units are added to each side of the box, the volume of the box is tripled. What is the largest possible volume of this box?
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
1970 Regional Competition For Advanced Students, 4
Find all real solutions of the following set of equations:
\[72x^3+4xy^2=11y^3\]
\[27x^5-45x^4y-10x^2y^3=\frac{-143}{32}y^5\]
2022 Pan-African, 2
Find all $3$-tuples $(a, b, c)$ of positive integers, with $a \geq b \geq c$, such that $a^2 + 3b$, $b^2 + 3c$, and $c^2 + 3a$ are all squares.
1982 Putnam, A5
$a, b, c, d$ are positive integers, and $r=1-\frac{a}{b}-\frac{c}{d}$.
And, $a+c \le 1982, r \ge 0$. Prove that $r>\frac{1}{1983^3}$.
2016 PUMaC Team, 6
Compute the sum of all positive integers less than $100$ that do not have consecutive $1$s in their binary representation.
VI Soros Olympiad 1999 - 2000 (Russia), grade8
[b]p1.[/b] Can a number ending in $1999$ be the square of a natural number?
[b]p2.[/b] The Three-Headed Snake Gorynych celebrated his birthday. His heads took turns feasting on birthday cakes and ate two identical cakes in $15$ minutes. It is known that each head ate as much time as it would take the other two to eat the same pie together. In how many minutes would the three heads of the Serpent Gorynych eat one pie together?
[b]p3.[/b] Find the sum of the coefficients of the polynomial obtained after opening the brackets and bringing similar terms into the expression:
a) $(7x - 6)^4 - 1$
b) $(7x - 6)^{1999}-1$
[b]p4.[/b] The general wants to arrange seven anti-aircraft installations so that among any three of them there are two installations, the distance between which is exactly $10$ kilometers. Help the general solve this problem.
[b]p5.[/b] Gulliver, whose height is $999$ millimeters, is building a tower of cubes. The first cube has a height of $1/2$ a lilikilometer, the second - $1/4$ a lilikilometer, the third - $1/8$ a lilikilometer, etc. How many cubes will be in the tower when its height exceeds Gulliver's height. ($1$ lilikilometer is equal to $1000$ lilimeters).
[b]p6.[/b] It is known that in any pentagon you can choose three diagonals from which you can form a triangle. Is there a pentagon in which such diagonals can be chosen in a unique way?
[b]p7.[/b] It is known that for natural numbers $a$ and $b$ the equality $19a = 99b$ holds. Can $a + b$ be a prime number?
[b]p8.[/b] Vitya thought of $5$ integers and told Vanya all their pairwise sums:
$$0, 1, 5, 7, 11, 12, 18, 24, 25, 29.$$
Help Vanya guess the numbers he has in mind.
[b]p9.[/b] In a $3 \times 3$ square, numbers are arranged so that the sum of the numbers in each row, in each column and on each major diagonal is equal to $0$. It is known that the sum of the squares of the numbers in the top row is $n$. What can be the sum of the squares of the numbers in the bottom line?
[b]p10.[/b] $N$ points are marked on a circle. Two players play this game: the first player connects two of these points with a chord, from the end of which the second player draws a chord to one of the remaining points so as not to intersect the already drawn chord. Then the first player makes the same “move” - draws a new chord from the end of the second chord to one of the remaining points so that it does not intersect any of the already drawn ones. The one who cannot make such a “move” loses. Who wins when played correctly? (A chord is a segment whose ends lie on a given circle)
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c2416727_soros_olympiad_in_mathematics]here[/url].
2021 Belarusian National Olympiad, 10.5
Prove that for any positive integer $n$ there exist infinitely many triples $(a,b,c)$ of pairwise distinct positive integers such that $ab+n,bc+n,ac+n$ are all perfect squares
2014 Turkey MO (2nd round), 2
Find all all positive integers x,y,and z satisfying the equation $x^3=3^y7^z+8$
2016 Iran Team Selection Test, 3
Let $p \neq 13$ be a prime number of the form $8k+5$ such that $39$ is a quadratic non-residue modulo $p$. Prove that the equation $$x_1^4+x_2^4+x_3^4+x_4^4 \equiv 0 \pmod p$$ has a solution in integers such that $p\nmid x_1x_2x_3x_4$.
2013 Saudi Arabia Pre-TST, 2.1
Prove that if $a$ is an integer relatively prime with $35$ then $(a^4 - 1)(a^4 + 15a^2 + 1) \equiv 0$ mod $35$.
1983 IMO Longlists, 26
Let $a, b, c$ be positive integers satisfying $\gcd (a, b) = \gcd (b, c) = \gcd (c, a) = 1$. Show that $2abc-ab-bc-ca$ cannot be represented as $bcx+cay +abz$ with nonnegative integers $x, y, z.$
2012 India IMO Training Camp, 2
Let $S$ be a nonempty set of primes satisfying the property that for each proper subset $P$ of $S$, all the prime factors of the number $\left(\prod_{p\in P}p\right)-1$ are also in $S$. Determine all possible such sets $S$.
2024 Brazil Undergrad MO, 6
For each positive integer \( n \), list in increasing order all irreducible fractions in the interval \([0, 1]\) that have a positive denominator less than or equal to \( n \):
\[
0 = \frac{p_0}{q_0} < \frac{1}{n} = \frac{p_1}{q_1} < \cdots < \frac{1}{1} = \frac{p_{M(n)}}{q_{M(n)}}.
\]
Let \( k \) be a positive integer. We define, for each \( n \) such that \( M(n) \geq k - 1 \),
\[
f_k(n) = \min \left\{ \sum_{s=0}^{k-1} q_{j+s} : 0 \leq j \leq M(n) - k + 1 \right\}.
\]
Determine, in function of \( k \),
\[
\lim_{n \to \infty} \frac{f_k(n)}{n}.
\]
For example, if \( n = 4 \), the enumeration is
\[
\frac{0}{1} < \frac{1}{4} < \frac{1}{3} < \frac{1}{2} < \frac{2}{3} < \frac{3}{4} < \frac{1}{1},
\]
where \( p_0 = 0, p_1 = 1, p_2 = 1, p_3 = 1, p_4 = 2, p_5 = 3, p_6 = 1 \) and \( q_0 = 1, q_1 = 4, q_2 = 3, q_3 = 2, q_4 = 3, q_5 = 4, q_6 = 1 \). In this case, we have \( f_1(4) = 1, f_2(4) = 5, f_3(4) = 8, f_4(4) = 10, f_5(4) = 13, f_6(4) = 17 \), and \( f_7(4) = 18 \).