Found problems: 15460
2019 CMIMC, 2
Determine the number of ordered pairs of positive integers $(m,n)$ with $1\leq m\leq 100$ and $1\leq n\leq 100$ such that
\[
\gcd(m+1,n+1) = 10\gcd(m,n).
\]
1992 Brazil National Olympiad, 5
Let $d(n)=\sum_{0<d|n}{1}$. Show that, for any natural $n>1$,
\[ \sum_{2 \leq i \leq n}{\frac{1}{i}} \leq \sum{\frac{d(i)}{n}} \leq \sum_{1 \leq i \leq n}{\frac{1}{i}} \]
2000 Estonia National Olympiad, 4
Let us define the sequences $a_1, a_2, a_3,...$ and $b_1, b_2, b_3,...$. with the following conditions
$a_1 = 3, b_1 = 1$ and $a_{n +1} =\frac{a_n^2+b_n^2}{2}$ and $b_{n + 1}= a_n \cdot b_n$ for each $n = 1, 2,...$.
Find all different prime factors οf the number $a_{2000} + b_{2000}$.
2018 Purple Comet Problems, 5
The positive integer $m$ is a multiple of $101$, and the positive integer $n$ is a multiple of $63$. Their sum is $2018$. Find $m - n$.
2006 Estonia Team Selection Test, 6
Denote by $d(n)$ the number of divisors of the positive integer $n$. A positive integer $n$ is called highly divisible if $d(n) > d(m)$ for all positive integers $m < n$.
Two highly divisible integers $m$ and $n$ with $m < n$ are called consecutive if there exists no highly divisible integer $s$ satisfying $m < s < n$.
(a) Show that there are only finitely many pairs of consecutive highly divisible
integers of the form $(a, b)$ with $a\mid b$.
(b) Show that for every prime number $p$ there exist infinitely many positive highly divisible integers $r$ such that $pr$ is also highly divisible.
MMPC Part II 1996 - 2019, 2015
[b]p1.[/b] Consider a right triangle with legs of lengths $a$ and $b$ and hypotenuse of length $c$ such that the perimeter of the right triangle is numerically (ignoring units) equal to its area. Prove that there is only one possible value of $a + b - c$, and determine that value.
[b]p2.[/b] Last August, Jennifer McLoud-Mann, along with her husband Casey Mann and an undergraduate David Von Derau at the University of Washington, Bothell, discovered a new tiling pattern of the plane with a pentagon. This is the fifteenth pattern of using a pentagon to cover the plane with no gaps or overlaps. It is unknown whether other pentagons tile the plane, or even if the number of patterns is finite. Below is a portion of this new tiling pattern.
[img]https://services.artofproblemsolving.com/download.php?id=YXR0YWNobWVudHMvOS8xLzM4M2RjZDEzZTliYTlhYTJkZDU4YTA4ZGMwMTA0MzA5ODk1NjI0LnBuZw==&rn=bW1wYyAyMDE1LnBuZw==[/img]
Determine the five angles (in degrees) of the pentagon $ABCDE$ used in this tiling. Explain your reasoning, and give the values you determine for the angles at the bottom.
[b]p3.[/b] Let $f(x) =\sqrt{2019 + 4\sqrt{2015}} +\sqrt{2015} x$. Find all rational numbers $x$ such that $f(x)$ is a rational number.
[b]p4.[/b] Alice has a whiteboard and a blackboard. The whiteboard has two positive integers on it, and the blackboard is initially blank. Alice repeats the following process.
$\bullet$ Let the numbers on the whiteboard be $a$ and $b$, with $a \le b$.
$\bullet$ Write $a^2$ on the blackboard.
$\bullet$ Erase $b$ from the whiteboard and replace it with $b - a$.
For example, if the whiteboard began with 5 and 8, Alice first writes $25$ on the blackboard and changes the whiteboard to $5$ and $3$. Her next move is to write $9$ on the blackboard and change the whiteboard to $2$ and $3$.
Alice stops when one of the numbers on the whiteboard is 0. At this point the sum of the numbers on the blackboard is $2015$.
a. If one of the starting numbers is $1$, what is the other?
b. What are all possible starting pairs of numbers?
[b]p5.[/b] Professor Beatrix Quirky has many multi-volume sets of books on her shelves. When she places a numbered set of $n$ books on her shelves, she doesn’t necessarily place them in order with book $1$ on the left and book $n$ on the right. Any volume can be placed at the far left. The only rule is that, except the leftmost volume, each volume must have a volume somewhere to its left numbered either one more or one less. For example, with a series of six volumes, Professor Quirky could place them in the order $123456$, or $324561$, or $564321$, but not $321564$ (because neither $4$ nor $6$ is to the left of $5$).
Let’s call a sequence of numbers a [i]quirky [/i] sequence of length $n$ if:
1. the sequence contains each of the numbers from $1$ to $n$, once each, and
2. if $k$ is not the first term of the sequence, then either $k + 1$ or $k - 1$ occurs somewhere before $k$ in the sequence.
Let $q_n$ be the number of quirky sequences of length $n$. For example, $q_3 = 4$ since the quirky sequences of length $3$ are $123$, $213$, $231$, and $321$.
a. List all quirky sequences of length $4$.
b. Find an explicit formula for $q_n$. Prove that your formula is correct.
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2010 Danube Mathematical Olympiad, 4
Let $p$ be a prime number of the form $4k+3$. Prove that there are no integers $w,x,y,z$ whose product is not divisible by $p$, such that:
\[
w^{2p}+x^{2p}+y^{2p}=z^{2p}.
\]
2009 ELMO Problems, 1
Let $a,b,c$ be positive integers such that $a^2 - bc$ is a square. Prove that $2a + b + c$ is not prime.
[i]Evan o'Dorney[/i]
2009 Turkey Team Selection Test, 1
Find all $ f: Q^ \plus{} \to\ Z$ functions that satisfy $ f \left(\frac {1}{x} \right) \equal{} f(x)$ and $ (x \plus{} 1)f(x \minus{} 1) \equal{} xf(x)$ for all rational numbers that are bigger than 1.
2024 Switzerland Team Selection Test, 5
Let $a_1, \dots, a_n, b_1, \dots, b_n$ be $2n$ positive integers such that the $n+1$ products
\[a_1 a_2 a_3 \cdots a_n, b_1 a_2 a_3 \cdots a_n, b_1 b_2 a_3 \cdots a_n, \dots, b_1 b_2 b_3 \cdots b_n\]
form a strictly increasing arithmetic progression in that order. Determine the smallest possible integer that could be the common difference of such an arithmetic progression.
2015 Saudi Arabia GMO TST, 4
Let $p$ be an odd prime number. Prove that there exists a unique integer $k$ such that $0 \le k \le p^2$ and $p^2$ divides $k(k + 1)(k + 2) ... (k + p - 3) - 1$.
Malik Talbi
2015 Cuba MO, 7
If $p$ is a prime number and $x, y$ are positive integers, find in terms of $p$, all pairs $(x, y)$ that satisfy the equation: $$p(x -2) = x(y -1).$$
If $x+y = 21$, find all triples $(x, y, p)$ that satisfy this equation.
2012 Canada National Olympiad, 2
For any positive integers $n$ and $k$, let $L(n,k)$ be the least common multiple of the $k$ consecutive integers $n,n+1,\ldots ,n+k-1$. Show that for any integer $b$, there exist integers $n$ and $k$ such that $L(n,k)>bL(n+1,k)$.
2016 Indonesia TST, 2
Let $a,b$ be two positive integers, such that $ab\neq 1$. Find all the integer values that $f(a,b)$ can take, where \[ f(a,b) = \frac { a^2+ab+b^2} { ab- 1} . \]
2012 Brazil National Olympiad, 4
There exists some integers $n,a_1,a_2,\ldots,a_{2012}$ such that
\[ n^2=\sum_{1 \leq i \leq 2012}{{a_i}^{p_i}} \]
where $p_i$ is the i-th prime ($p_1=2,p_2=3,p_3=5,p_4=7,\ldots$) and $a_i>1$ for all $i$?
LMT Accuracy Rounds, 2022 S3
Find the difference between the greatest and least values of $lcm (a,b,c)$, where $a$, $b$, and $c$ are distinct positive integers between $1$ and $10$, inclusive.
2001 JBMO ShortLists, 3
Find all the three-digit numbers $\overline{abc}$ such that the $6003$-digit number $\overline{abcabc\ldots abc}$ is divisible by $91$.
1958 November Putnam, B2
Hi everybody!
I've an interesting problem!
Can you solve it?
Prove [b]Erdös-Ginzburg-Ziv Theorem[/b]: [i]"Among any $2n-1$ integers, there are some $n$ whose sum is divisible by $n$."[/i]
2020 MOAA, Sets 1-5
[u]Set 1[/u]
[b]B1.[/b] Evaluate $2 + 0 - 2 \times 0$.
[b]B2.[/b] It takes four painters four hours to paint four houses. How many hours does it take forty painters to paint forty houses?
[b]B3.[/b] Let $a$ be the answer to this question. What is $\frac{1}{2-a}$?
[u]Set 2[/u]
[b]B4.[/b] Every day at Andover is either sunny or rainy. If today is sunny, there is a $60\%$ chance that tomorrow is sunny and a $40\%$ chance that tomorrow is rainy. On the other hand, if today is rainy, there is a $60\%$ chance that tomorrow is rainy and a $40\%$ chance that tomorrow is sunny. Given that today is sunny, the probability that the day after tomorrow is sunny can be expressed as n%, where n is a positive integer. What is $n$?
[b]B5.[/b] In the diagram below, what is the value of $\angle DD'Y$ in degrees?
[img]https://cdn.artofproblemsolving.com/attachments/0/8/6c966b13c840fa1885948d0e4ad598f36bee9d.png[/img]
[b]B6.[/b] Christina, Jeremy, Will, and Nathan are standing in a line. In how many ways can they be arranged such that Christina is to the left of Will and Jeremy is to the left of Nathan?
Note: Christina does not have to be next to Will and Jeremy does not have to be next to Nathan. For example, arranging them as Christina, Jeremy, Will, Nathan would be valid.
[u]Set 3[/u]
[b]B7.[/b] Let $P$ be a point on side $AB$ of square $ABCD$ with side length $8$ such that $PA = 3$. Let $Q$ be a point on side $AD$ such that $P Q \perp P C$. The area of quadrilateral $PQDB$ can be expressed in the form $m/n$ for relatively prime positive integers $m$ and $n$. Compute $m + n$.
[b]B8.[/b] Jessica and Jeffrey each pick a number uniformly at random from the set $\{1, 2, 3, 4, 5\}$ (they could pick the same number). If Jessica’s number is $x$ and Jeffrey’s number is $y$, the probability that $x^y$ has a units digit of $1$ can be expressed as $m/n$ , where $m$ and $n$ are relatively prime positive integers. Find $m + n$.
[b]B9.[/b] For two points $(x_1, y_1)$ and $(x_2, y_2)$ in the plane, we define the taxicab distance between them as $|x_1 - x_2| + |y_1 - y_2|$. For example, the taxicab distance between $(-1, 2)$ and $(3,\sqrt2)$ is $6-\sqrt2$. What is the largest number of points Nathan can find in the plane such that the taxicab distance between any two of the points is the same?
[u]Set 4[/u]
[b]B10.[/b] Will wants to insert some × symbols between the following numbers: $$1\,\,\,2\,\,\,3\,\,\,4\,\,\,6$$ to see what kinds of answers he can get. For example, here is one way he can insert $\times$ symbols: $$1 \times 23 \times 4 \times 6 = 552.$$ Will discovers that he can obtain the number $276$. What is the sum of the numbers that he multiplied together to get $276$?
[b]B11.[/b] Let $ABCD$ be a parallelogram with $AB = 5$, $BC = 3$, and $\angle BAD = 60^o$ . Let the angle bisector of $\angle ADC$ meet $AC$ at $E$ and $AB$ at $F$. The length $EF$ can be expressed as $m/n$, where $m$ and $n$ are relatively prime positive integers. What is $m + n$?
[b]B12.[/b] Find the sum of all positive integers $n$ such that $\lfloor \sqrt{n^2 - 2n + 19} \rfloor = n$.
Note: $\lfloor x \rfloor$ denotes the greatest integer less than or equal to $x$.
[u]Set 5[/u]
[b]B13.[/b] This year, February $29$ fell on a Saturday. What is the next year in which February $29$ will be a Saturday?
[b]B14.[/b] Let $f(x) = \frac{1}{x} - 1$. Evaluate $$f\left( \frac{1}{2020}\right) \times f\left( \frac{2}{2020}\right) \times f\left( \frac{3}{2020}\right) \times \times ... \times f\left( \frac{2019}{2020}\right) .$$
[b]B15.[/b] Square $WXYZ$ is inscribed in square $ABCD$ with side length $1$ such that $W$ is on $AB$, $X$ is on $BC$, $Y$ is on $CD$, and $Z$ is on $DA$. Line $W Y$ hits $AD$ and $BC$ at points $P$ and $R$ respectively, and line $XZ$ hits $AB$ and $CD$ at points $Q$ and $S$ respectively. If the area of $WXYZ$ is $\frac{13}{18}$ , then the area of $PQRS$ can be expressed as $m/n$ for relatively prime positive integers $m$ and $n$. What is $m + n$?
PS. You had better use hide for answers. Last sets have been posted [url=https://artofproblemsolving.com/community/c4h2777424p24371574]here[/url]. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2016 Macedonia JBMO TST, 5
Solve the following equation in the set of positive integers
$x + y^2 + (GCD(x, y))^2 = xy \cdot GCD(x, y)$.
2001 Switzerland Team Selection Test, 4
For a natural number $n \ge 2$, consider all representations of $n$ as a sum of its distinct divisors, $n = t_1 + t_2 + ... + t_k, t_i| n$. Two such representations differing only in order of the summands are considered the same (for example, $20 = 10+5+4+1$ and $20 = 5+1+10+4$). Let $a(n)$ be the number of different representations of $n$ in this form. Prove or disprove: There exists M such that $a(n) \le M$ for all $n \ge 2$.
2023 Romania National Olympiad, 3
Determine all natural numbers $m$ and $n$ such that
\[
n \cdot (n + 1) = 3^m + s(n) + 1182,
\]
where $s(n)$ represents the sum of the digits of the natural number $n$.
1959 Miklós Schweitzer, 1
[b]1.[/b] Let $p_n$ be the $n$th prime number. Prove that
$\sum_{n=2}^{\infty} \frac{1}{np_n-(n-1)p_{n-1}}= \infty$
[b](N.17)[/b]
2011 QEDMO 10th, 3
Let $a, b$ be positive integers such that $a^2 + ab + 1$ a multiple of $b^2 + ab + 1$. Prove that $a = b$.
2008 Paraguay Mathematical Olympiad, 1
How many positive integers $n < 500$ exist such that its prime factors are exclusively $2$, $7$, $11$, or a combination of these?