Found problems: 15460
2019 Belarusian National Olympiad, 9.5
For a positive integer $n$ write down all its positive divisors in increasing order: $1=d_1<d_2<\ldots<d_k=n$.
Find all positive integers $n$ divisible by $2019$ such that $n=d_{19}\cdot d_{20}$.
[i](I. Gorodnin)[/i]
1999 IberoAmerican, 1
Let $B$ be an integer greater than 10 such that everyone of its digits belongs to the set $\{1,3,7,9\}$. Show that $B$ has a [b]prime divisor[/b] greater than or equal to 11.
2014 Bulgaria National Olympiad, 1
Find all pairs of prime numbers $p\,,q$ for which:
\[p^2 \mid q^3 + 1 \,\,\, \text{and} \,\,\, q^2 \mid p^6-1\]
[i]Proposed by P. Boyvalenkov[/i]
2013 Thailand Mathematical Olympiad, 1
Find the largest integer that divides $p^4 - 1$ for all primes $p > 4$
2025 Euler Olympiad, Round 1, 5
Find the minimum value of $m + n$, where $m$ and $n$ are positive integers satisfying:
$2023 \vert m + 2025n$
$2025 \vert m + 2023n$
[i]Proposed by Prudencio Guerrero Fernández [/i]
2025 Azerbaijan IZhO TST, 3
Find all natural numbers $a$ and $b$ such that \[a|b^2, \quad b|a^2 \mbox{ and } a+1|b^2+1.\]
2012 Online Math Open Problems, 19
In trapezoid $ABCD$, $AB < CD$, $AB\perp BC$, $AB\parallel CD$, and the diagonals $AC$, $BD$ are perpendicular at point $P$. There is a point $Q$ on ray $CA$ past $A$ such that $QD\perp DC$. If
\[\frac{QP} {AP}+\frac{AP} {QP} = \left( \frac{51}{14}\right)^4 - 2,\]then $\frac{BP} {AP}-\frac{AP}{BP}$ can be expressed in the form $\frac{m}{n}$ for relatively prime positive integers $m,n$. Compute $m+n$.
[i]Ray Li.[/i]
2014 Canada National Olympiad, 3
Let $p$ be a fixed odd prime. A $p$-tuple $(a_1,a_2,a_3,\ldots,a_p)$ of integers is said to be [i]good[/i] if
[list]
[*] [b](i)[/b] $0\le a_i\le p-1$ for all $i$, and
[*] [b](ii)[/b] $a_1+a_2+a_3+\cdots+a_p$ is not divisible by $p$, and
[*] [b](iii)[/b] $a_1a_2+a_2a_3+a_3a_4+\cdots+a_pa_1$ is divisible by $p$.[/list]
Determine the number of good $p$-tuples.
2011 Irish Math Olympiad, 3
The integers $a_0, a_1, a_2, a_3,\ldots$ are defined as follows:
$a_0 = 1$, $a_1 = 3$, and $a_{n+1} = a_n + a_{n-1}$ for all $n \ge 1$.
Find all integers $n \ge 1$ for which $na_{n+1} + a_n$ and $na_n + a_{n-1}$ share a common factor greater than $1$.
2006 China National Olympiad, 3
Positive integers $k, m, n$ satisfy $mn=k^2+k+3$, prove that at least one of the equations $x^2+11y^2=4m$ and $x^2+11y^2=4n$ has an odd solution.
LMT Guts Rounds, 2015
[u]Round 5[/u]
[b]p13.[/b] Sally is at the special glasses shop, where there are many different optical lenses that distort what she sees and cause her to see things strangely. Whenever she looks at a shape through lens $A$, she sees a shape with $2$ more sides than the original (so a square would look like a hexagon). When she looks through lens $B$, she sees the shape with $3$ fewer sides (so a hexagon would look like a triangle). How many sides are in the shape that has $200$ more diagonals when looked at from lense $A$ than from lense $B$?
[b]p14.[/b] How many ways can you choose $2$ cells of a $5$ by $5$ grid such that they aren't in the same row or column?
[b]p15.[/b] If $a + \frac{1}{b} = (2015)^{-1}$ and $b + \frac{1}{a} = (2016)^2$ then what are all the possible values of $b$?
[u]Round 6[/u]
[b]p16.[/b] In Canadian football, linebackers must wear jersey numbers from $30 -35$ while defensive linemen must wear numbers from $33 -38$ (both intervals are inclusive). If a team has $5$ linebackers and $4$ defensive linemen, how many ways can it assign jersey numbers to the $9$ players such that no two people have the same jersey number?
[b]p17.[/b] What is the maximum possible area of a right triangle with hypotenuse $8$?
[b]p18.[/b] $9$ people are to play touch football. One will be designated the quarterback, while the other eight will be divided into two (indistinct) teams of $4$. How many ways are there for this to be done?
[u]Round 7[/u]
[b]p19.[/b] Express the decimal $0.3$ in base $7$.
[b]p20.[/b] $2015$ people throw their hats in a pile. One at a time, they each take one hat out of the pile so that each has a random hat. What is the expected number of people who get their own hat?
[b]p21.[/b] What is the area of the largest possible trapezoid that can be inscribed in a semicircle of radius $4$?
[u]Round 8[/u]
[b]p22.[/b] What is the base $7$ expression of $1211_3 \cdot 1110_2 \cdot 292_{11} \cdot 20_3$ ?
[b]p23.[/b] Let $f(x)$ equal the ratio of the surface area of a sphere of radius $x$ to the volume of that same sphere. Let $g(x)$ be a quadratic polynomial in the form $x^2 + bx + c$ with $g(6) = 0$ and the minimum value of $g(x)$ equal to $c$. Express $g(x)$ as a function of $f(x)$ (e.g. in terms of $f(x)$).
[b]p24.[/b] In the country of Tahksess, the income tax code is very complicated. Citizens are taxed $40\%$ on their first $\$20, 000$ and $45\%$ on their next $\$40, 000$ and $50\%$ on their next $\$60, 000$ and so on, with each $5\%$ increase in tax rate aecting $\$20, 000$ more than the previous tax rate. The maximum tax rate, however, is $90\%$. What is the overall tax rate (percentage of money owed) on $1$ million dollars in income?
PS. You should use hide for answers. Rounds 1-4 have been posted [url=https://artofproblemsolving.com/community/c3h3157009p28696627]here [/url] and 9-12 [url=https://artofproblemsolving.com/community/c3h3158564p28715928]here[/url]. .Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2014 ELMO Shortlist, 6
Show that the numerator of \[ \frac{2^{p-1}}{p+1} - \left(\sum_{k = 0}^{p-1}\frac{\binom{p-1}{k}}{(1-kp)^2}\right) \] is a multiple of $p^3$ for any odd prime $p$.
[i]Proposed by Yang Liu[/i]
2017 Junior Regional Olympiad - FBH, 3
On blackboard there are $10$ different positive integers which sum is equal to $62$. Prove that product of those numbers is divisible with $60$
2015 Danube Mathematical Competition, 1
Consider a positive integer $n=\overline{a_1a_2...a_k},k\ge 2$.A [i]trunk[/i] of $n$ is a number of the form $\overline{a_1a_2...a_t},1\le t\le k-1$.(For example,the number $23$ is a [i]trunk[/i] of $2351$.)
By $T(n)$ we denote the sum of all [i]trunk[/i] of $n$ and let $S(n)=a_1+a_2+...+a_k$.Prove that $n=S(n)+9\cdot T(n)$.
2024 Stars of Mathematics, P2
For any positive integer $n$ we define $n!!=\prod_{k=0}^{\lceil n/2\rceil -1}(n-2k)$. Prove that if the positive integers $a,b,c$ satisfy $a!=b!!+c!!$, then $b$ and $c$ are odd.
[i]Proposed by Mihai Cipu[/i]
2009 Hong kong National Olympiad, 4
find all pairs of non-negative integer pairs $(m,n)$,satisfies
$107^{56}(m^{2}-1)+2m+3=\binom{113^{114}}{n}$
2019 Latvia Baltic Way TST, 15
Determine all tuples of integers $(a,b,c)$ such that:
$$(a-b)^3(a+b)^2 = c^2 + 2(a-b) + 1$$
2020 JBMO Shortlist, 5
The positive integer $k$ and the set $A$ of distinct integers from $1$ to $3k$ inclusively are such that there are no distinct $a$, $b$, $c$ in $A$ satisfying $2b = a + c$. The numbers from $A$ in the interval $[1, k]$ will be called [i]small[/i]; those in $[k + 1, 2k]$ - [i]medium[/i] and those in $[2k + 1, 3k]$ - [i]large[/i]. It is always true that there are [b]no[/b] positive integers $x$ and $d$ such that if $x$, $x + d$, and $x + 2d$ are divided by $3k$ then the remainders belong to $A$ and those of $x$ and $x + d$ are different and are:
a) small? $\hspace{1.5px}$ b) medium? $\hspace{1.5px}$ c) large?
([i]In this problem we assume that if a multiple of $3k$ is divided by $3k$ then the remainder is $3k$ rather than $0$[/i].)
2024 EGMO, 3
We call a positive integer $n{}$ [i]peculiar[/i] if, for any positive divisor $d{}$ of $n{}$ the integer $d(d + 1)$ divides $n(n + 1).$ Prove that for any four different peculiar positive integers $A, B, C$ and $D{}$ the following holds:
\[\gcd(A, B, C, D) = 1.\]
2002 Hungary-Israel Binational, 3
Let $p \geq 5$ be a prime number. Prove that there exists a positive integer $a < p-1$ such that neither of $a^{p-1}-1$ and $(a+1)^{p-1}-1$ is divisible by $p^{2}$ .
2023 Romania National Olympiad, 4
We say that a number $n \ge 2$ has the property $(P)$ if, in its prime factorization, at least one of the factors has an exponent $3$.
a) Determine the smallest number $N$ with the property that, no matter how we choose $N$ consecutive natural numbers, at least one of them has the property $(P).$
b) Determine the smallest $15$ consecutive numbers $a_1, a_2, \ldots, a_{15}$ that do not have the property $(P),$ such that the sum of the numbers $5 a_1, 5 a_2, \ldots, 5 a_{15}$ is a number with the property $(P).$
2023 Chile Junior Math Olympiad, 5
$1600$ bananas are distributed among $100$ monkeys (it is possible that some monkeys do not receive bananas). Prvove that at least four monkeys receive the same amount of bananas.
2007 Estonia Math Open Senior Contests, 7
Does there exist a natural number $ n$ such that $ n>2$ and the sum of squares of
some $ n$ consecutive integers is a perfect square?
2023 Argentina National Olympiad Level 2, 6
There is a row of $n$ chairs, numbered in order from left to right from $1$ to $n$. Additionally, the $n$ numbers from $1$ to $n$ are distributed on the backs of the chairs, one number per chair, such that the number on the back of a chair never matches the number of the chair itself. There is a child sitting on each chair.
Every time the teacher claps, each child checks the number on the back of the chair they are sitting on and moves to the chair corresponding to that number. Prove that for any $m$ that is not a power of a prime, with $1 < m \leqslant n$, it is possible to distribute the numbers on the backrests such that, after the teacher claps $m$ times, for the first time, all the children are sitting in the chairs where they initially started.
(During the process, it may happen that some children return to their original chairs, but they do not all do so simultaneously until the $m^{\text{th}}$ clap.)
2021 South East Mathematical Olympiad, 5
To commemorate the $43rd$ anniversary of the restoration of mathematics competitions, a mathematics enthusiast
arranges the first $2021$ integers $1,2,\dots,2021$ into a sequence $\{a_n\}$ in a certain order, so that the sum of any consecutive $43$ items in the sequence is a multiple of $43$.
(1) If the sequence of numbers is connected end to end into a circle, prove that the sum of any consecutive $43$ items on the circle is also a multiple of $43$;
(2) Determine the number of sequences $\{a_n\}$ that meets the conditions of the question.