This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 6

2020 USOMO, 1

Let $ABC$ be a fixed acute triangle inscribed in a circle $\omega$ with center $O$. A variable point $X$ is chosen on minor arc $AB$ of $\omega$, and segments $CX$ and $AB$ meet at $D$. Denote by $O_1$ and $O_2$ the circumcenters of triangles $ADX$ and $BDX$, respectively. Determine all points $X$ for which the area of triangle $OO_1O_2$ is minimized. [i]Proposed by Zuming Feng[/i]

Mathematical Minds 2024, P2

Let $ABCD$ be a square and $E$ a point on side $CD$ such that $\angle DAE = 30^{\circ}$. The bisector of angle $\angle AEC$ intersects line $BD$ at point $F$. Lines $FC$ and $AE$ intersect at $S$. Find $\angle SDC$. [i]Proposed by Ana Boiangiu[/i]

Gheorghe Țițeica 2024, P3

Let $M$ be inside segment $BC$ in triangle $\triangle ABC$. $(ABM)$ cuts $AC$ in $A$ and $N$. Construct the circle through $A,N$ and tangent to $BC$ in $P$. Prove that $\measuredangle BAP=\measuredangle PNM$.

2019 USAJMO, 4

Let $ABC$ be a triangle with $\angle ABC$ obtuse. The [i]$A$-excircle[/i] is a circle in the exterior of $\triangle ABC$ that is tangent to side $BC$ of the triangle and tangent to the extensions of the other two sides. Let $E$, $F$ be the feet of the altitudes from $B$ and $C$ to lines $AC$ and $AB$, respectively. Can line $EF$ be tangent to the $A$-excircle? [i]Proposed by Ankan Bhattacharya, Zack Chroman, and Anant Mudgal[/i]

2024 Turkey Team Selection Test, 5

In a scalene triangle $ABC$, $H$ is the orthocenter, and $G$ is the centroid. Let $A_b$ and $A_c$ be points on $AB$ and $AC$, respectively, such that $B$, $C$, $A_b$, $A_c$ are cyclic, and the points $A_b$, $A_c$, $H$ are collinear. $O_a$ is the circumcenter of the triangle $AA_bA_c$. $O_b$ and $O_c$ are defined similarly. Prove that the centroid of the triangle $O_aO_bO_c$ lies on the line $HG$.

Mathematical Minds 2024, P8

Let $ABC$ be a triangle with circumcircle $\Omega$, incircle $\omega$, and $A$-excircle $\omega_A$. Let $X$ and $Y$ be the tangency points of $\omega_A$ with $AB$ and $AC$. Lines $XY$ and $BC$ intersect in $T$. The tangent from $T$ to $\omega$ different from $BC$ intersects $\omega$ at $K$. The radical axis of $\omega_A$ and $\Omega$ intersects $BC$ in $S$. The tangent from $S$ to $\omega_A$ different from $BC$ intersects $\omega_A$ at $L$. Prove that $A$, $K$ and $L$ are collinear. [i]Proposed by Ana Boiangiu[/i]