Found problems: 1049
2014 Contests, 2
Consider an acute triangle $ABC$ of area $S$. Let $CD \perp AB$ ($D \in AB$), $DM \perp AC$ ($M \in AC$) and $DN \perp BC$ ($N \in BC$). Denote by $H_1$ and $H_2$ the orthocentres of the triangles $MNC$, respectively $MND$. Find the area of the quadrilateral $AH_1BH_2$ in terms of $S$.
2011 Olympic Revenge, 1
Let $p, q, r, s, t \in \mathbb{R}^{*}_{+}$ satisfying:
i) $p^2 + pq + q^2 = s^2$
ii) $q^2 + qr + r^2 = t^2$
iii) $r^2 + rp + p^2 = s^2 - st + t^2$
Prove that
\[\frac{s^2 - st + t^2}{s^2t^2} = \frac{r^2}{q^2t^2} + \frac{p^2}{q^2s^2} - \frac{pr}{q^2ts}\]
1977 AMC 12/AHSME, 19
Let $E$ be the point of intersection of the diagonals of convex quadrilateral $ABCD$, and let $P,Q,R,$ and $S$ be the centers of the circles circumscribing triangles $ABE,$ $BCE$, $CDE$, and $ADE$, respectively. Then
$\textbf{(A) }PQRS\text{ is a parallelogram}$
$\textbf{(B) }PQRS\text{ is a parallelogram if an only if }ABCD\text{ is a rhombus}$
$\textbf{(C) }PQRS\text{ is a parallelogram if an only if }ABCD\text{ is a rectangle}$
$\textbf{(D) }PQRS\text{ is a parallelogram if an only if }ABCD\text{ is a parallelogram}$
$\textbf{(E) }\text{none of the above are true}$
2007 CentroAmerican, 3
Consider a circle $S$, and a point $P$ outside it. The tangent lines from $P$ meet $S$ at $A$ and $B$, respectively. Let $M$ be the midpoint of $AB$. The perpendicular bisector of $AM$ meets $S$ in a point $C$ lying inside the triangle $ABP$. $AC$ intersects $PM$ at $G$, and $PM$ meets $S$ in a point $D$ lying outside the triangle $ABP$. If $BD$ is parallel to $AC$, show that $G$ is the centroid of the triangle $ABP$.
[i]Arnoldo Aguilar (El Salvador)[/i]
2000 India Regional Mathematical Olympiad, 1
Let $AC$ be a line segment in the plane and $B$ a points between $A$ and $C$. Construct isosceles triangles $PAB$ and $QAC$ on one side of the segment $AC$ such that $\angle APB = \angle BQC = 120^{\circ}$ and an isosceles triangle $RAC$ on the other side of $AC$ such that $\angle ARC = 120^{\circ}.$ Show that $PQR$ is an equilateral triangle.
2003 China Girls Math Olympiad, 3
As shown in the figure, quadrilateral $ ABCD$ is inscribed in a circle with $ AC$ as its diameter, $ BD \perp AC,$ and $ E$ the intersection of $ AC$ and $ BD.$ Extend line segment $ DA$ and $ BA$ through $ A$ to $ F$ and $ G$ respectively, such that $ DG \parallel{} BF.$ Extend $ GF$ to $ H$ such that $ CH \perp GH.$ Prove that points $ B, E, F$ and $ H$ lie on one circle.
[asy]
defaultpen(linewidth(0.8)+fontsize(10));size(150);
real a=4, b=6.5, c=9, d=a*c/b, g=14, f=sqrt(a^2+b^2)*sqrt(a^2+d^2)/g;
pair E=origin, A=(0,a), B=(-b,0), C=(0,-c), D=(d,0), G=A+g*dir(B--A), F=A+f*dir(D--A), M=midpoint(G--C);
path c1=circumcircle(A,B,C), c2=Circle(M, abs(M-G));
pair Hf=F+10*dir(G--F), H=intersectionpoint(F--Hf, c2);
dot(A^^B^^C^^D^^E^^F^^G^^H);
draw(c1^^c2^^G--D--C--A--G--F--D--B--A^^F--H--C--B--F);
draw(H--B^^F--E^^G--C, linetype("2 2"));
pair point= E;
label("$A$", A, dir(point--A));
label("$B$", B, dir(point--B));
label("$C$", C, dir(point--C));
label("$D$", D, dir(point--D));
label("$F$", F, dir(point--F));
label("$G$", G, dir(point--G));
label("$H$", H, dir(point--H));
label("$E$", E, NE);[/asy]
2012 India IMO Training Camp, 1
A quadrilateral $ABCD$ without parallel sides is circumscribed around a circle with centre $O$. Prove that $O$ is a point of intersection of middle lines of quadrilateral $ABCD$ (i.e. barycentre of points $A,\,B,\,C,\,D$) iff $OA\cdot OC=OB\cdot OD$.
2003 Mexico National Olympiad, 2
$A, B, C$ are collinear with $B$ betweeen $A$ and $C$. $K_{1}$ is the circle with diameter $AB$, and $K_{2}$ is the circle with diameter $BC$. Another circle touches $AC$ at $B$ and meets $K_{1}$ again at $P$ and $K_{2}$ again at $Q$. The line $PQ$ meets $K_{1}$ again at $R$ and $K_{2}$ again at $S$. Show that the lines $AR$ and $CS$ meet on the perpendicular to $AC$ at $B$.
2003 AMC 8, 10
$\textbf{Bake Sale}$
Four friends, Art, Roger, Paul and Trisha, bake cookies, and all cookies have the same thickness. The shapes of the cookies differ, as shown.
$\circ$ Art's cookies are trapezoids:
[asy]size(80);defaultpen(linewidth(0.8));defaultpen(fontsize(8));
draw(origin--(5,0)--(5,3)--(2,3)--cycle);
draw(rightanglemark((5,3), (5,0), origin));
label("5 in", (2.5,0), S);
label("3 in", (5,1.5), E);
label("3 in", (3.5,3), N);[/asy]
$\circ$ Roger's cookies are rectangles:
[asy]size(80);defaultpen(linewidth(0.8));defaultpen(fontsize(8));
draw(origin--(4,0)--(4,2)--(0,2)--cycle);
draw(rightanglemark((4,2), (4,0), origin));
draw(rightanglemark((0,2), origin, (4,0)));
label("4 in", (2,0), S);
label("2 in", (4,1), E);[/asy]
$\circ$ Paul's cookies are parallelograms:
[asy]size(80);defaultpen(linewidth(0.8));defaultpen(fontsize(8));
draw(origin--(3,0)--(2.5,2)--(-0.5,2)--cycle);
draw((2.5,2)--(2.5,0), dashed);
draw(rightanglemark((2.5,2),(2.5,0), origin));
label("3 in", (1.5,0), S);
label("2 in", (2.5,1), W);[/asy]
$\circ$ Trisha's cookies are triangles:
[asy]size(80);defaultpen(linewidth(0.8));defaultpen(fontsize(8));
draw(origin--(3,0)--(3,4)--cycle);
draw(rightanglemark((3,4),(3,0), origin));
label("3 in", (1.5,0), S);
label("4 in", (3,2), E);[/asy]
Each friend uses the same amount of dough, and Art makes exactly 12 cookies. How many cookies will be in one batch of Trisha's cookies?
$ \textbf{(A)}\ 10\qquad\textbf{(B)}\ 12\qquad\textbf{(C)}\ 16\qquad\textbf{(D)}\ 18\qquad\textbf{(E)}\ 24$
1963 All Russian Mathematical Olympiad, 029
a) Each diagonal of the quadrangle halves its area. Prove that it is a parallelogram.
b) Three main diagonals of the hexagon halve its area. Prove that they intersect in one point.
2006 QEDMO 2nd, 7
Let $H$ be the orthocenter of a triangle $ABC$, and let $D$ be the midpoint of the segment $AH$.
The altitude $BH$ of triangle $ABC$ intersects the perpendicular to the line $AB$ through the point $A$ at the point $M$.
The altitude $CH$ of triangle $ABC$ intersects the perpendicular to the line $CA$ through the point $A$ at the point $N$.
The perpendicular bisector of the segment $AB$ intersects the perpendicular to the line $BC$ through the point $B$ at the point $U$.
The perpendicular bisector of the segment $CA$ intersects the perpendicular to the line $BC$ through the point $C$ at the point $V$.
Finally, let $E$ be the midpoint of the side $BC$ of triangle $ABC$.
Prove that the points $D$, $M$, $N$, $U$, $V$ all lie on one and the same perpendicular to the line $AE$.
[i]Extensions.[/i] In other words, we have to show that the points $M$, $N$, $U$, $V$ lie on the perpendicular to the line $AE$ through the point $D$. Additionally, one can find two more points on this perpendicular:
[b](a)[/b] The nine-point circle of triangle $ABC$ is known to pass through the midpoint $E$ of its side $BC$. Let $D^{\prime}$ be the point where this nine-point circle intersects the line $AE$ apart from $E$. Then, the point $D^{\prime}$ lies on the perpendicular to the line $AE$ through the point $D$.
[b](b)[/b] Let the tangent to the circumcircle of triangle $ABC$ at the point $A$ intersect the line $BC$ at a point $X$. Then, the point $X$ lies on the perpendicular to the line $AE$ through the point $D$.
[i]Comment.[/i] The actual problem was created by Victor Thébault around 1950 (cf. Hyacinthos messages #1102 and #1551). The extension [b](a)[/b] initially was a (pretty trivial) lemma in Thébault's solution of the problem. Extension [b](b)[/b] is rather new; in the form "prove that $X\in UV$", it was [url=http://www.mathlinks.ro/Forum/viewtopic.php?t=3659]proposed by Valentin Vornicu for the Balkan MO 2003[/url], however it circulated in the Hyacinthos newsgroup before (Hyacinthos messages #7240 and #7242), where different solutions of the problem were discussed as well. Hereby, "Hyacinthos" always refers to the triangle geometry newsgroup "Hyacinthos", which can be found at http://groups.yahoo.com/group/Hyacinthos .
I proposed the problem for the QEDMO math fight wishing to draw some attention to it. It has a rather short and elementary solution, by the way (without using radical axes or inversion like the standard solutions).
Darij
1974 Canada National Olympiad, 2
Let $ABCD$ be a rectangle with $BC=3AB$. Show that if $P,Q$ are the points on side $BC$ with $BP = PQ = QC$, then \[\angle DBC+\angle DPC = \angle DQC.\]
2020 European Mathematical Cup, 1
Let $ABCD$ be a parallelogram such that $|AB| > |BC|$. Let $O$ be a point on the line $CD$ such that $|OB| = |OD|$. Let $\omega$ be a circle with center $O$ and radius $|OC|$. If $T$ is the second intersection of $\omega$ and $CD$, prove that $AT, BO$ and $\omega$ are concurrent.
[i]Proposed by Ivan Novak[/i]
2002 China Western Mathematical Olympiad, 2
Let $ O$ be the circumcenter of acute triangle $ ABC$. Point $ P$ is in the interior of triangle $ AOB$. Let $ D,E,F$ be the projections of $ P$ on the sides $ BC,CA,AB$, respectively. Prove that the parallelogram consisting of $ FE$ and $ FD$ as its adjacent sides lies inside triangle $ ABC$.
2003 South africa National Olympiad, 2
Given a parallelogram $ABCD$, join $A$ to the midpoints $E$ and $F$ of the opposite sides $BC$ and $CD$. $AE$ and $AF$ intersect the diagonal $BD$ in $M$ and $N$. Prove that $M$ and $N$ divide $BD$ into three equal parts.
2014 Contests, 3
Let $ABCD$ be a trapezoid (quadrilateral with one pair of parallel sides) such that $AB < CD$. Suppose that $AC$ and $BD$ meet at $E$ and $AD$ and $BC$ meet at $F$. Construct the parallelograms $AEDK$ and $BECL$. Prove that $EF$ passes through the midpoint of the segment $KL$.
2019 Dutch IMO TST, 3
Let $ABC$ be an acute angles triangle with $O$ the center of the circumscribed circle. Point $Q$ lies on the circumscribed circle of $\vartriangle BOC$ so that $OQ$ is a diameter. Point $M$ lies on $CQ$ and point $N$ lies internally on line segment $BC$ so that $ANCM$ is a parallelogram. Prove that the circumscribed circle of $\vartriangle BOC$ and the lines $AQ$ and $NM$ pass through the same point.
2010 Czech-Polish-Slovak Match, 3
Let $ABCD$ be a convex quadrilateral for which \[ AB+CD=\sqrt{2}\cdot AC\qquad\text{and}\qquad BC+DA=\sqrt{2}\cdot BD.\] Prove that $ABCD$ is a parallelogram.
2003 AMC 8, 8
$\textbf{Bake Sale}$
Four friends, Art, Roger, Paul and Trisha, bake cookies, and all cookies have the same thickness. The shapes of the cookies differ, as shown.
$\circ$ Art's cookies are trapezoids:
[asy]size(80);defaultpen(linewidth(0.8));defaultpen(fontsize(8));
draw(origin--(5,0)--(5,3)--(2,3)--cycle);
draw(rightanglemark((5,3), (5,0), origin));
label("5 in", (2.5,0), S);
label("3 in", (5,1.5), E);
label("3 in", (3.5,3), N);[/asy]
$\circ$ Roger's cookies are rectangles:
[asy]size(80);defaultpen(linewidth(0.8));defaultpen(fontsize(8));
draw(origin--(4,0)--(4,2)--(0,2)--cycle);
draw(rightanglemark((4,2), (4,0), origin));
draw(rightanglemark((0,2), origin, (4,0)));
label("4 in", (2,0), S);
label("2 in", (4,1), E);[/asy]
$\circ$ Paul's cookies are parallelograms:
[asy]size(80);defaultpen(linewidth(0.8));defaultpen(fontsize(8));
draw(origin--(3,0)--(2.5,2)--(-0.5,2)--cycle);
draw((2.5,2)--(2.5,0), dashed);
draw(rightanglemark((2.5,2),(2.5,0), origin));
label("3 in", (1.5,0), S);
label("2 in", (2.5,1), W);[/asy]
$\circ$ Trisha's cookies are triangles:
[asy]size(80);defaultpen(linewidth(0.8));defaultpen(fontsize(8));
draw(origin--(3,0)--(3,4)--cycle);
draw(rightanglemark((3,4),(3,0), origin));
label("3 in", (1.5,0), S);
label("4 in", (3,2), E);[/asy]
Each friend uses the same amount of dough, and Art makes exactly 12 cookies. Who gets the fewest cookies from one batch of cookie dough?
$ \textbf{(A)}\ \text{Art}\qquad\textbf{(B)}\ \text{Roger}\qquad\textbf{(C)}\ \text{Paul}\qquad\textbf{(D)}\ \text{Trisha}\qquad\textbf{(E)}\ \text{There is a tie for fewest.}$
2010 Canadian Mathematical Olympiad Qualification Repechage, 8
Consider three parallelograms $P_1,~P_2,~ P_3$. Parallelogram $P_3$ is inside parallelogram $P_2$, and the vertices of $P_3$ are on the edges of $P_2$. Parallelogram $P_2$ is inside parallelogram $P_1$, and the vertices of $P_2$ are on the edges of $P_1$. The sides of $P_3$ are parallel to the sides of $P_1$. Prove that one side of $P_3$ has length at least half the length of the parallel side of $P_1$.
2007 Estonia Math Open Junior Contests, 2
The sides $AB, BC, CD$ and $DA$ of the convex quadrilateral $ABCD$ have midpoints $E, F, G$ and $H$. Prove that the triangles $EFB, FGC, GHD$ and $HEA$ can be put together into a parallelogram equal to $EFGH$.
2000 Iran MO (3rd Round), 1
Two circles intersect at two points $A$ and $B$. A line $\ell$ which passes through the point $A$ meets the two circles again at the points $C$ and $D$, respectively. Let $M$ and $N$ be the midpoints of the arcs $BC$ and $BD$ (which do not contain the point $A$) on the respective circles. Let $K$ be the midpoint of the segment $CD$. Prove that $\measuredangle MKN = 90^{\circ}$.
JBMO Geometry Collection, 2014
Consider an acute triangle $ABC$ of area $S$. Let $CD \perp AB$ ($D \in AB$), $DM \perp AC$ ($M \in AC$) and $DN \perp BC$ ($N \in BC$). Denote by $H_1$ and $H_2$ the orthocentres of the triangles $MNC$, respectively $MND$. Find the area of the quadrilateral $AH_1BH_2$ in terms of $S$.
2003 Baltic Way, 14
Equilateral triangles $AMB,BNC,CKA$ are constructed on the exterior of a triangle $ABC$. The perpendiculars from the midpoints of $MN, NK, KM$ to the respective lines $CA, AB, BC$ are constructed. Prove that these three perpendiculars pass through a single point.
2014 Vietnam National Olympiad, 4
Let $ABC$ be an acute triangle, $(O)$ be the circumcircle, and $AB<AC.$ Let $I$ be the midpoint of arc $BC$ (not containing $A$). $K$ lies on $AC,$ $K\ne C$ such that $IK=IC.$ $BK$ intersects $(O)$ at the second point $D,$ $D\ne B$ and intersects $AI$ at $E.$ $DI$ intersects $AC$ at $F.$
a) Prove that $EF=\frac{BC}{2}.$
b) $M$ lies on $DI$ such that $CM$ is parallel to $AD.$ $KM$ intersects $BC$ at $N.$ The circumcircle of triangle $BKN$ intersects $(O)$ at the second point $P.$ Prove that $PK$ passes through the midpoint of segment $AD.$