This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 134

2022 Israel TST, 1

Let $n>1$ be an integer. Find all $r\in \mathbb{R}$ so that the system of equations in real variables $x_1, x_2, \dots, x_n$: \begin{align*} &(r\cdot x_1-x_2)(r\cdot x_1-x_3)\dots (r\cdot x_1-x_n)=\\ =&(r\cdot x_2-x_1)(r\cdot x_2-x_3)\dots (r\cdot x_2-x_n)=\\ &\qquad \qquad \qquad \qquad \vdots \\ =&(r\cdot x_n-x_1)(r\cdot x_n-x_2)\dots (r\cdot x_n-x_{n-1}) \end{align*} has a solution where the numbers $x_1, x_2, \dots, x_n$ are pairwise distinct.

2022 Israel TST, 1

Let $n>1$ be an integer. Find all $r\in \mathbb{R}$ so that the system of equations in real variables $x_1, x_2, \dots, x_n$: \begin{align*} &(r\cdot x_1-x_2)(r\cdot x_1-x_3)\dots (r\cdot x_1-x_n)=\\ =&(r\cdot x_2-x_1)(r\cdot x_2-x_3)\dots (r\cdot x_2-x_n)=\\ &\qquad \qquad \qquad \qquad \vdots \\ =&(r\cdot x_n-x_1)(r\cdot x_n-x_2)\dots (r\cdot x_n-x_{n-1}) \end{align*} has a solution where the numbers $x_1, x_2, \dots, x_n$ are pairwise distinct.

2005 Unirea, 4

$a>0$ $f:[-a,a]\rightarrow R$ such that $f''$ exist and Riemann-integrable suppose $f(a)=f(-a)$ $ f'(-a)=f'(a)=a^2$ Prove that $6a^3\leq \int_{-a}^{a}{f''(x)}^2dx$ Study equality case ? Radu Miculescu

2013 ELMO Shortlist, 1

Find all ordered triples of non-negative integers $(a,b,c)$ such that $a^2+2b+c$, $b^2+2c+a$, and $c^2+2a+b$ are all perfect squares. [i]Proposed by Matthew Babbitt[/i]

1993 Moldova Team Selection Test, 3

Let $f:\mathbb{R}\rightarrow\mathbb{R}$ be a function defined as the maximum of a finite number of functions $g:\mathbb{R}\rightarrow\mathbb{R}$ of the form $g(x)=C\cdot10^{-|x-d|}$ (with different values of parameters $d{}$ and $C>0$). For real numbers $a<b$ we have $f(a)=f(b)$. Prove that on the segment $[a;b]$ the sum of legnths of segments on which $f$ is increasing is equal to the sum of legnths of segments on which $f$ is decreasing.

1954 Czech and Slovak Olympiad III A, 1

Solve the equation $$ax^2+2(a-1)x+a-5=0$$ in real numbers with respect to (real) parametr $a$.

2013 Kosovo National Mathematical Olympiad, 4

Find all value of parameter $a$ such that equations $x^2-ax+1=0$ and $x^2-x+a=0$ have at least one same solution. For this value $a$ find same solution of this equations(real or imaginary).

1991 Arnold's Trivium, 28

Sketch the phase portrait and investigate its variation under variation of the small complex parameter $\epsilon$: \[\dot{z}=\epsilon z-(1+i)z|z|^2+\overline{z}^4\]

2014 ELMO Shortlist, 3

Let $a,b,c,d,e,f$ be positive real numbers. Given that $def+de+ef+fd=4$, show that \[ ((a+b)de+(b+c)ef+(c+a)fd)^2 \geq\ 12(abde+bcef+cafd). \][i]Proposed by Allen Liu[/i]

2014 Postal Coaching, 3

Fix positive integers $k$ and $n$.Derive a simple expression involving Fibonacci numbers for the number of sequences $(T_1,T_2,\ldots,T_k)$ of subsets $T_i$ of $[n]$ such that $T_1\subseteq T_2\supseteq T_3\subseteq T_4\supseteq\ldots$. [color=#008000]Moderator says: and the original source for this one is Richard Stanley, [i]Enumerative Combinatorics[/i] vol. 1 (1st edition), exercise 1.15.[/color]

2023 Israel National Olympiad, P4

For each positive integer $n$, find all triples $a,b,c$ of real numbers for which \[\begin{cases}a=b^n+c^n\\ b=c^n+a^n\\ c=a^n+b^n\end{cases}\]

2002 AIME Problems, 8

Find the least positive integer $k$ for which the equation $\lfloor \frac{2002}{n}\rfloor = k$ has no integer solutions for $n.$ (The notation $\lfloor x \rfloor$ means the greatest integer less than or equal to $x.$)

1985 Vietnam National Olympiad, 2

Find all real values of parameter $ a$ for which the equation in $ x$ \[ 16x^4 \minus{} ax^3 \plus{} (2a \plus{} 17)x^2 \minus{} ax \plus{} 16 \equal{} 0 \] has four solutions which form an arithmetic progression.

1970 Miklós Schweitzer, 12

Let $ \vartheta_1,...,\vartheta_n$ be independent, uniformly distributed, random variables in the unit interval $ [0,1]$. Define \[ h(x)\equal{} \frac1n \# \{k: \; \vartheta_k<x\ \}.\] Prove that the probability that there is an $ x_0 \in (0,1)$ such that $ h(x_0)\equal{}x_0$, is equal to $ 1\minus{} \frac1n.$ [i]G. Tusnady[/i]

1991 Arnold's Trivium, 20

Find the derivative of the solution of the equation $\ddot{x} =x + A\dot{x}^2$, with initial conditions $x(0) = 1$, $\dot{x}(0) = 0$, with respect to the parameter $A$ for $A = 0$.

2005 Denmark MO - Mohr Contest, 2

Determine, for any positive real number $a$, the number of solutions $(x,y)$ to the system of equations $$\begin{cases} |x|+|y|= 1 \\ x^2 + y^2 = a \end{cases}$$ where $x$ and $y$ are real numbers.

2000 Slovenia National Olympiad, Problem 2

Find all real numbers $a$ for which the following equation has a unique real solution: $$|x-1|+|x-2|+\ldots+|x-99|=a.$$

2009 USAMO, 1

Given circles $ \omega_1$ and $ \omega_2$ intersecting at points $ X$ and $ Y$, let $ \ell_1$ be a line through the center of $ \omega_1$ intersecting $ \omega_2$ at points $ P$ and $ Q$ and let $ \ell_2$ be a line through the center of $ \omega_2$ intersecting $ \omega_1$ at points $ R$ and $ S$. Prove that if $ P, Q, R$ and $ S$ lie on a circle then the center of this circle lies on line $ XY$.

1964 Czech and Slovak Olympiad III A, 3

Determine all values of parameter $\alpha\in [0,2\pi]$ such that the equation $$(2\cos\alpha-1)x^2+4x+4\cos\alpha+2=0$$ has 1) a positive root $x_1$, 2) if a second root $x_2$ exists and if $x_2\neq x_1$, the $x_2\leq 0$.

2007 Kurschak Competition, 1

We have placed $n>3$ cards around a circle, facing downwards. In one step we may perform the following operation with three consecutive cards. Calling the one on the center $B$, the two on the ends $A$ and $C$, we put card $C$ in the place of $A$, then move $A$ and $B$ to the places originally occupied by $B$ and $C$, respectively. Meanwhile, we flip the cards $A$ and $B$. Using a number of these steps, is it possible to move each card to its original place, but facing upwards?

2009 Italy TST, 2

$ABC$ is a triangle in the plane. Find the locus of point $P$ for which $PA,PB,PC$ form a triangle whose area is equal to one third of the area of triangle $ABC$.

1993 All-Russian Olympiad, 1

For integers $x$, $y$, and $z$, we have $(x-y)(y-z)(z-x)=x+y+z$. Prove that $27|x+y+z$.

2014 AMC 12/AHSME, 25

The parabola $P$ has focus $(0,0)$ and goes through the points $(4,3)$ and $(-4,-3)$. For how many points $(x,y)\in P$ with integer coefficients is it true that $|4x+3y|\leq 1000$? $\textbf{(A) }38\qquad \textbf{(B) }40\qquad \textbf{(C) }42\qquad \textbf{(D) }44\qquad \textbf{(E) }46\qquad$

2008 Greece Team Selection Test, 4

Given is the equation $x^2+y^2-axy+2=0$ where $a$ is a positive integral parameter. $i.$Show that,for $a\neq 4$ there exist no pairs $(x,y)$ of positive integers satisfying the equation. $ii.$ Show that,for $a=4$ there exist infinite pairs $(x,y)$ of positive integers satisfying the equation,and determine those pairs.

1981 Czech and Slovak Olympiad III A, 1

Determine all $a\in\mathbb R$ such that the inequality \[x^4+x^3-2(a+1)x^2-ax+a^2<0\] has at least one real solution $x.$