This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 179

Cono Sur Shortlist - geometry, 2018.G3

Consider the pentagon $ABCDE$ such that $AB = AE = x$, $AC = AD = y$, $\angle BAE = 90^o$ and $\angle ACB = \angle ADE = 135^o$. It is known that $C$ and $D$ are inside the triangle $BAE$. Determine the length of $CD$ in terms of $x$ and $y$.

1997 Estonia National Olympiad, 3

Each diagonal of a convex pentagon is parallel to one of its sides. Prove that the ratio of the length of each diagonal to the length of the corresponding parallel side is the same, and find this ratio.

1947 Moscow Mathematical Olympiad, 126

Given a convex pentagon $ABCDE$, prove that if an arbitrary point $M$ inside the pentagon is connected by lines with all the pentagon’s vertices, then either one or three or five of these lines cross the sides of the pentagon opposite the vertices they pass. Note: In reality, we need to exclude the points of the diagonals, because that in this case the drawn lines can pass not through the internal points of the sides, but through the vertices. But if the drawn diagonals are not considered or counted twice (because they are drawn from two vertices), then the statement remains true.

2016 Austria Beginners' Competition, 4

Tags: pentagon , geometry
Let $ABCDE$ be a convex pentagon with five equal sides and right angles at $C$ and $D$. Let $P$ denote the intersection point of the diagonals $AC$ and $BD$. Prove that the segments $PA$ and $PD$ have the same length. (Gottfried Perz)

2006 IMO Shortlist, 3

Let $ ABCDE$ be a convex pentagon such that \[ \angle BAC \equal{} \angle CAD \equal{} \angle DAE\qquad \text{and}\qquad \angle ABC \equal{} \angle ACD \equal{} \angle ADE. \]The diagonals $BD$ and $CE$ meet at $P$. Prove that the line $AP$ bisects the side $CD$. [i]Proposed by Zuming Feng, USA[/i]

Brazil L2 Finals (OBM) - geometry, 2008.3

Let $P$ be a convex pentagon with all sides equal. Prove that if two of the angles of $P$ add to $180^o$, then it is possible to cover the plane with $P$, without overlaps.

2023 HMNT, 9

Tags: geometry , pentagon
Pentagon $SPEAK$ is inscribed in triangle $NOW$ such that $S$ and $P$ lie on segment $NO$, $K$ and $A$ lie on segment $NW$, and $E$ lies on segment $OW$. Suppose that $NS = SP = PO$ and $NK = KA = AW$. Given that $EP = EK = 5$ and $EA = ES = 6$, compute $OW$.

Kyiv City MO Seniors Round2 2010+ geometry, 2019.10.3.1

Let $ABCDE$ be a regular pentagon with center $M$. Point $P \ne M$ is selected on segment $MD$. The circumscribed circle of triangle $ABP$ intersects the line $AE$ for second time at point $Q$, and a line that is perpendicular to the $CD$ and passes through $P$, for second time at the point $R$. Prove that $AR = QR$.

1986 IMO Longlists, 38

To each vertex of a regular pentagon an integer is assigned, so that the sum of all five numbers is positive. If three consecutive vertices are assigned the numbers $x,y,z$ respectively, and $y<0$, then the following operation is allowed: $x,y,z$ are replaced by $x+y,-y,z+y$ respectively. Such an operation is performed repeatedly as long as at least one of the five numbers is negative. Determine whether this procedure necessarily comes to an end after a finite number of steps.

VI Soros Olympiad 1999 - 2000 (Russia), 10.6

Points $A$ and $B$ are given on a circle. With the help of a compass and a ruler, construct on this circle the points $C,$ $D$, $E$ that lie on one side of the straight line $AB$ and for which the pentagon with vertices $A$, $B$, $C$, $D$, $E$ has the largest possible area

2015 Abels Math Contest (Norwegian MO) Final, 3

The five sides of a regular pentagon are extended to lines $\ell_1, \ell_2, \ell_3, \ell_4$, and $\ell_5$. Denote by $d_i$ the distance from a point $P$ to $\ell_i$. For which point(s) in the interior of the pentagon is the product $d_1d_2d_3d_4d_5$ maximal?

2024 Abelkonkurransen Finale, 4b

The pentagons $P_1P_2P_3P_4P_5$ and$I_1I_2I_3I_4I_5$ are cyclic, where $I_i$ is the incentre of the triangle $P_{i-1}P_iP_{i+1}$ (reckoned cyclically, that is $P_0=P_5$ and $P_6=P_1$). Show that the lines $P_1I_1, P_2I_2, P_3I_3, P_4I_4$ and $P_5I_5$ meet in a single point.

1962 All Russian Mathematical Olympiad, 020

Given regular pentagon $ABCDE$. $M$ is an arbitrary point inside $ABCDE$ or on its side. Let the distances $|MA|, |MB|, ... , |ME|$ be renumerated and denoted with $$r_1\le r_2\le r_3\le r_4\le r_5.$$ Find all the positions of the $M$, giving $r_3$ the minimal possible value. Find all the positions of the $M$, giving $r_3$ the maximal possible value.

2018 Thailand TST, 1

Let $ABCDE$ be a convex pentagon such that $AB=BC=CD$, $\angle{EAB}=\angle{BCD}$, and $\angle{EDC}=\angle{CBA}$. Prove that the perpendicular line from $E$ to $BC$ and the line segments $AC$ and $BD$ are concurrent.

II Soros Olympiad 1995 - 96 (Russia), 9.3

Is there a convex pentagon in which each diagonal is equal to some side?

2017 Pan-African Shortlist, G3

Let $ABCDE$ be a regular pentagon, and $F$ some point on the arc $AB$ of the circumcircle of $ABCDE$. Show that \[ \frac{FD}{FE + FC} = \frac{FB + FA}{FD} = \frac{-1 + \sqrt{5}}{2}, \] and that $FD + FB + FA = FE + FC$.

1987 All Soviet Union Mathematical Olympiad, 450

Given a convex pentagon $ABCDE$ with $\angle ABC= \angle ADE$ and $\angle AEC= \angle ADB$ . Prove that $\angle BAC = \angle DAE$ .

2022/2023 Tournament of Towns, P3

A pentagon $ABCDE$ is circumscribed about a circle. The angles at the vertices $A{}$, $C{}$ and $E{}$ of the pentagon are equal to $100^\circ$. Find the measure of the angle $\angle ACE$.

2018 Morocco TST., 4

Let $ABCDE$ be a convex pentagon such that $AB=BC=CD$, $\angle{EAB}=\angle{BCD}$, and $\angle{EDC}=\angle{CBA}$. Prove that the perpendicular line from $E$ to $BC$ and the line segments $AC$ and $BD$ are concurrent.

2017 Israel National Olympiad, 5

A regular pentagon $ABCDE$ is given. The point $X$ is on his circumcircle, on the arc $\overarc{AE}$. Prove that $|AX|+|CX|+|EX|=|BX|+|DX|$. [u][b]Remark:[/b][/u] Here's a more general version of the problem: Prove that for any point $X$ in the plane, $|AX|+|CX|+|EX|\ge|BX|+|DX|$, with equality only on the arc $\overarc{AE}$.

1995 Bundeswettbewerb Mathematik, 3

Each diagonal of a convex pentagon is parallel to one side of the pentagon. Prove that the ratio of the length of a diagonal to that of its corresponding side is the same for all five diagonals, and compute this ratio.

1967 Dutch Mathematical Olympiad, 3

The convex pentagon $ABC DE$ is given, such that $AB,BC,CD$ and $DE$ are parallel to one of the diagonals. Prove that this also applies to $EA$.

Estonia Open Junior - geometry, 1996.2.4

A pentagon (not necessarily convex) has all sides of length $1$ and its product of cosine of any four angles equal to zero. Find all possible values of the area of such a pentagon.

2022 Iranian Geometry Olympiad, 1

Tags: pentagon , geometry
Find the angles of the pentagon $ABCDE$ in the figure below.

2022 Czech-Polish-Slovak Junior Match, 3

Tags: pentagon , geometry
Given is a convex pentagon $ABCDE$ in which $\angle A = 60^o$, $\angle B = 100^o$, $\angle C = 140^o$. Show that this pentagon can be placed in a circle with a radius of $\frac23 AD$.