This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 663

2004 IMC, 2

Let $f,g:[a,b]\to [0,\infty)$ be two continuous and non-decreasing functions such that each $x\in [a,b]$ we have \[ \int^x_a \sqrt { f(t) }\ dt \leq \int^x_a \sqrt { g(t) }\ dt \ \ \textrm{and}\ \int^b_a \sqrt {f(t)}\ dt = \int^b_a \sqrt { g(t)}\ dt. \] Prove that \[ \int^b_a \sqrt { 1+ f(t) }\ dt \geq \int^b_a \sqrt { 1 + g(t) }\ dt. \]

2012 National Olympiad First Round, 1

Find the perimeter of a triangle whose altitudes are $3,4,$ and $6$. $ \textbf{(A)}\ 12\sqrt\frac35 \qquad \textbf{(B)}\ 16\sqrt\frac35 \qquad \textbf{(C)}\ 20\sqrt\frac35 \qquad \textbf{(D)}\ 24\sqrt\frac35 \qquad \textbf{(E)}\ \text{None}$

2013 ELMO Shortlist, 14

Let $O$ be a point (in the plane) and $T$ be an infinite set of points such that $|P_1P_2| \le 2012$ for every two distinct points $P_1,P_2\in T$. Let $S(T)$ be the set of points $Q$ in the plane satisfying $|QP| \le 2013$ for at least one point $P\in T$. Now let $L$ be the set of lines containing exactly one point of $S(T)$. Call a line $\ell_0$ passing through $O$ [i]bad[/i] if there does not exist a line $\ell\in L$ parallel to (or coinciding with) $\ell_0$. (a) Prove that $L$ is nonempty. (b) Prove that one can assign a line $\ell(i)$ to each positive integer $i$ so that for every bad line $\ell_0$ passing through $O$, there exists a positive integer $n$ with $\ell(n) = \ell_0$. [i]Proposed by David Yang[/i]

2006 Kyiv Mathematical Festival, 2

See all the problems from 5-th Kyiv math festival [url=http://www.mathlinks.ro/Forum/viewtopic.php?p=506789#p506789]here[/url] 2006 equilateral triangles are located in the square with side 1. The sum of their perimeters is equal to 300. Prove that at least three of them have a common point.

2011 AMC 10, 25

Let $T_1$ be a triangle with sides $2011, 2012,$ and $2013$. For $n \ge 1$, if $T_n=\triangle ABC$ and $D,E,$ and $F$ are the points of tangency of the incircle of $\triangle ABC$ to the sides $AB,BC$ and $AC$, respectively, then $T_{n+1}$ is a triangle with side lengths $AD,BE,$ and $CF$, if it exists. What is the perimeter of the last triangle in the sequence $(T_n)$? $ \textbf{(A)}\ \frac{1509}{8} \qquad \textbf{(B)}\ \frac{1509}{32} \qquad \textbf{(C)}\ \frac{1509}{64} \qquad \textbf{(D)}\ \frac{1509}{128} \qquad \textbf{(E)}\ \frac{1509}{256} $

1978 All Soviet Union Mathematical Olympiad, 261

Given a circle with radius $R$ and inscribed $n$-gon with area $S$. We mark one point on every side of the given polygon. Prove that the perimeter of the polygon with the vertices in the marked points is not less than $2S/R$.

2015 Kyiv Math Festival, P4

Let $O$ be the intersection point of altitudes $AD$ and $BE$ of equilateral triangle $ABC.$ Points $K$ and $L$ are chosen inside segments $AO$ and $BO$ respectively such that line $KL$ bisects the perimeter of triangle $ABC.$ Let $F$ be the intersection point of lines $EK$ and $DL.$ Prove that $O$ is the circumcenter of triangle $DEF.$

2006 Estonia National Olympiad, 2

In a right triangle, the length of one side is a prime and the lengths of the other side and the hypotenuse are integral. The ratio of the triangle perimeter and the incircle diameter is also an integer. Find all possible side lengths of the triangle.

1979 Czech And Slovak Olympiad IIIA, 5

Given a triangle $ABC$ with side sizes $a \ge b \ge c$. Among all pairs of points $X, Y$ on the boundary of triangle $ABC$, which this boundary divides into two parts of equal length, find all such for which the distance is $X Y$ maximum.

1996 Moldova Team Selection Test, 6

In triangle $ABC$ the angle $C$ is obtuse, $m(\angle A)=2m(\angle B)$ and the sidelengths are integers. Find the smallest possible perimeter of this triangle.

May Olympiad L1 - geometry, 1995.4

We have four white equilateral triangles of $3$ cm on each side and join them by their sides to obtain a triangular base pyramid. At each edge of the pyramid we mark two red dots that divide it into three equal parts. Number the red dots, so that when you scroll them in the order they were numbered, result a path with the smallest possible perimeter. How much does that path measure?

Ukrainian From Tasks to Tasks - geometry, 2015.10

Can the sum of the lengths of the median, angle bisector and altitude of a triangle be equal to its perimeter if a) these segments are drawn from three different vertices? b) these segments are drawn from one vertex?

2016 Mathematical Talent Reward Programme, MCQ: P 11

In rectangle $ABCD$, $AD=1$, $P$ is on $AB$ and $DB$ and $DP$ trisect $\angle ADC$. What is the perimeter $\triangle BDP$ [list=1] [*] $3+\frac{\sqrt{3}}{3}$ [*] $2+\frac{4\sqrt{3}}{3}$ [*] $2+2\sqrt{2}$ [*] $\frac{3+3\sqrt{5}}{2}$ [/list]

1989 AMC 12/AHSME, 3

A square is cut into three rectangles along two lines parallel to a side, as shown. If the perimeter of each of the three rectangles is 24, then the area of the original square is [asy] draw((0,0)--(9,0)--(9,9)--(0,9)--cycle); draw((3,0)--(3,9), dashed); draw((6,0)--(6,9), dashed);[/asy] $\text{(A)} \ 24 \qquad \text{(B)} \ 36 \qquad \text{(C)} \ 64 \qquad \text{(D)} \ 81 \qquad \text{(E)} \ 96$

2003 AIME Problems, 12

In convex quadrilateral $ABCD$, $\angle A \cong \angle C$, $AB = CD = 180$, and $AD \neq BC$. The perimeter of $ABCD$ is 640. Find $\lfloor 1000 \cos A \rfloor$. (The notation $\lfloor x \rfloor$ means the greatest integer that is less than or equal to $x$.)

2004 Iran MO (3rd Round), 8

$\mathbb{P}$ is a n-gon with sides $l_1 ,...,l_n$ and vertices on a circle. Prove that no n-gon with this sides has area more than $\mathbb{P}$

2012-2013 SDML (Middle School), 6

How many non-congruent scalene triangles with perimeter $21$ have integer side lengths that form an arithmetic sequence? (In an arithmetic sequence, successive terms differ by the same amount.) $\text{(A) }0\qquad\text{(B) }1\qquad\text{(C) }3\qquad\text{(D) }4\qquad\text{(E) }6$

1952 AMC 12/AHSME, 39

If the perimeter of a rectangle is $ p$ and its diagonal is $ d$, the difference between the length and width of the rectangle is: $ \textbf{(A)}\ \frac {\sqrt {8d^2 \minus{} p^2}}{2} \qquad\textbf{(B)}\ \frac {\sqrt {8d^2 \plus{} p^2}}{2} \qquad\textbf{(C)}\ \frac {\sqrt {6d^2 \minus{} p^2}}{2}$ $ \textbf{(D)}\ \frac {\sqrt {6d^2 \plus{} p^2}}{2} \qquad\textbf{(E)}\ \frac {8d^2 \minus{} p^2}{4}$

2001 Tuymaada Olympiad, 4

Unit square $ABCD$ is divided into $10^{12}$ smaller squares (not necessarily equal). Prove that the sum of perimeters of all the smaller squares having common points with diagonal $AC$ does not exceed 1500. [i]Proposed by A. Kanel-Belov[/i]

2004 USAMTS Problems, 5

Medians $AD$, $BE$, and $CF$ of triangle $ABC$ meet at $G$ as shown. Six small triangles, each with vertex at $G$, are formed. We draw the circles inscribed in triangles $AFG$, $BDG$, and $CDG$ as shown. Prove that if these three circles are all congruent, then $ABC$ is equilateral. [asy] size(200); defaultpen(fontsize(10)); pair C=origin, B=(12,0), A=(3,14), D=midpoint(B--C), E=midpoint(A--C), F=midpoint(A--B), G=centroid(A,B,C); draw(A--B--C--A--D^^B--E^^C--F); draw(incircle(C,G,D)^^incircle(G,D,B)^^incircle(A,F,G)); pair point=G; label("$A$", A, dir(point--A)); label("$B$", B, dir(point--B)); label("$C$", C, dir(point--C)); label("$D$", D, dir(point--D)); label("$E$", E, dir(point--E)); label("$F$", F, dir(point--F)); label("$G$", G, dir(7));[/asy]

1985 AMC 12/AHSME, 2

In an arcade game, the "monster" is the shaded sector of a circle of radius $ 1$ cm, as shown in the figure. The missing piece (the mouth) has central angle $ 60^{\circ}$. What is the perimeter of the monster in cm? [asy]size(100); defaultpen(linewidth(0.7)); filldraw(Arc(origin,1,30,330)--dir(330)--origin--dir(30)--cycle, yellow, black); label("1", (sqrt(3)/4, 1/4), NW); label("$60^\circ$", (1,0)); [/asy] $ \textbf{(A)}\ \pi \plus{} 2 \qquad \textbf{(B)}\ 2\pi \qquad \textbf{(C)}\ \frac53 \pi \qquad \textbf{(D)}\ \frac56 \pi \plus{} 2 \qquad \textbf{(E)}\ \frac53 \pi \plus{} 2$

2018 Hanoi Open Mathematics Competitions, 4

How many triangles are there for which the perimeters are equal to $30$ cm and the lengths of sides are integers in centimeters? A. $16$ B. $17$ C. $18$ D. $19$ E. $20$

1953 AMC 12/AHSME, 33

The perimeter of an isosceles right triangle is $ 2p$. Its area is: $ \textbf{(A)}\ (2\plus{}\sqrt{2})p \qquad\textbf{(B)}\ (2\minus{}\sqrt{2})p \qquad\textbf{(C)}\ (3\minus{}2\sqrt{2})p^2\\ \textbf{(D)}\ (1\minus{}2\sqrt{2})p^2 \qquad\textbf{(E)}\ (3\plus{}2\sqrt{2})p^2$

2000 District Olympiad (Hunedoara), 4

Consider the pyramid $ VABCD, $ where $ V $ is the top and $ ABCD $ is a rectangular base. If $ \angle BVD = \angle AVC, $ then prove that the triangles $ VAC $ and $ VBD $ share the same perimeter and area.

2003 AIME Problems, 7

Point $B$ is on $\overline{AC}$ with $AB = 9$ and $BC = 21$. Point $D$ is not on $\overline{AC}$ so that $AD = CD$, and $AD$ and $BD$ are integers. Let $s$ be the sum of all possible perimeters of $\triangle ACD$. Find $s$.