Found problems: 663
1975 All Soviet Union Mathematical Olympiad, 207
What is the smallest perimeter of the convex $32$-gon, having all the vertices in the nodes of cross-lined paper with the sides of its squares equal to $1$?
1994 AMC 8, 16
The perimeter of one square is $3$ times the perimeter of another square. The area of the larger square is how many times the area of the smaller square?
$\text{(A)}\ 2 \qquad \text{(B)}\ 3 \qquad \text{(C)}\ 4 \qquad \text{(D)}\ 6 \qquad \text{(E)}\ 9$
2003 IMO Shortlist, 7
Let $ABC$ be a triangle with semiperimeter $s$ and inradius $r$. The semicircles with diameters $BC$, $CA$, $AB$ are drawn on the outside of the triangle $ABC$. The circle tangent to all of these three semicircles has radius $t$. Prove that
\[\frac{s}{2}<t\le\frac{s}{2}+\left(1-\frac{\sqrt{3}}{2}\right)r. \]
[i]Alternative formulation.[/i] In a triangle $ABC$, construct circles with diameters $BC$, $CA$, and $AB$, respectively. Construct a circle $w$ externally tangent to these three circles. Let the radius of this circle $w$ be $t$.
Prove: $\frac{s}{2}<t\le\frac{s}{2}+\frac12\left(2-\sqrt3\right)r$, where $r$ is the inradius and $s$ is the semiperimeter of triangle $ABC$.
[i]Proposed by Dirk Laurie, South Africa[/i]
1998 All-Russian Olympiad Regional Round, 11.6
A polygon with sides running along the sides of the squares was cut out of an endless chessboard. A segment of the perimeter of a polygon is called black if the polygon adjacent to it from the inside is which cell is black, respectively white if the cell is white. Let $A$ be the number of black segments on the perimeter, and $B$ be the number of white ones, Let the polygon consist of $a$ black and $b$ white cells. Prove that $A-B = 4(a -b)$.
2009 Kyiv Mathematical Festival, 4
Two convex polygons can be placed into a square with the side $1$ without intersection. Prove that at least one polygon has the perimeter that is less than or equal to $3,5$ .
2002 Federal Competition For Advanced Students, Part 2, 3
Let $H$ be the orthocenter of an acute-angled triangle $ABC$. Show that the triangles $ABH,BCH$ and $CAH$ have the same perimeter if and only if the triangle $ABC$ is equilateral.
2006 AIME Problems, 1
In quadrilateral $ABCD, \angle B$ is a right angle, diagonal $\overline{AC}$ is perpendicular to $\overline{CD},$ $AB=18, BC=21,$ and $CD=14.$ Find the perimeter of $ABCD$.
1999 Gauss, 11
The floor of a rectangular room is covered with square tiles. The room is 10 tiles long and 5 tiles wide. The number of tiles that touch the walls of the room is
$\textbf{(A)}\ 26 \qquad \textbf{(B)}\ 30 \qquad \textbf{(C)}\ 34 \qquad \textbf{(D)}\ 46 \qquad \textbf{(E)}\ 50$
2014 NIMO Problems, 5
Let $ABC$ be a triangle with $AB = 130$, $BC = 140$, $CA = 150$. Let $G$, $H$, $I$, $O$, $N$, $K$, $L$ be the centroid, orthocenter, incenter, circumenter, nine-point center, the symmedian point, and the de Longchamps point. Let $D$, $E$, $F$ be the feet of the altitudes of $A$, $B$, $C$ on the sides $\overline{BC}$, $\overline{CA}$, $\overline{AB}$. Let $X$, $Y$, $Z$ be the $A$, $B$, $C$ excenters and let $U$, $V$, $W$ denote the midpoints of $\overline{IX}$, $\overline{IY}$, $\overline{IZ}$ (i.e. the midpoints of the arcs of $(ABC)$.) Let $R$, $S$, $T$ denote the isogonal conjugates of the midpoints of $\overline{AD}$, $\overline{BE}$, $\overline{CF}$. Let $P$ and $Q$ denote the images of $G$ and $H$ under an inversion around the circumcircle of $ABC$ followed by a dilation at $O$ with factor $\frac 12$, and denote by $M$ the midpoint of $\overline{PQ}$. Then let $J$ be a point such that $JKLM$ is a parallelogram. Find the perimeter of the convex hull of the self-intersecting $17$-gon $LETSTRADEBITCOINS$ to the nearest integer. A diagram has been included but may not be to scale.
[asy]
size(6cm);
import olympiad;
import cse5;
pair A = dir(110);
pair B = dir(210);
pair C = dir(330);
pair D = foot(A,B,C);
pair E = foot(B,C,A);
pair F = foot(C,A,B);
pair G = centroid(A,B,C);
pair H = orthocenter(A,B,C);
pair I = incenter(A,B,C);
pair isocon(pair targ) {
return extension(A,2*foot(targ,I,A)-targ,
C,2*foot(targ,I,C)-targ);
}
pair O = circumcenter(A,B,C);
pair K = isocon(G);
pair N = midpoint(O--H);
pair U = extension(O,midpoint(B--C),A,I);
pair V = extension(O,midpoint(C--A),B,I);
pair W = extension(O,midpoint(A--B),C,I);
pair X = -I + 2*U;
pair Y = -I + 2*V;
pair Z = -I + 2*W;
pair R = isocon(midpoint(A--D));
pair S = isocon(midpoint(B--E));
pair T = isocon(midpoint(C--F));
pair L = 2*H-O;
pair P = 0.5/conj(G);
pair Q = 0.5/conj(H);
pair M = midpoint(P--Q);
pair J = K+M-L;
draw(A--B--C--cycle);
void draw_cevians(pair target) {
draw(A--extension(A,target,B,C));
draw(B--extension(B,target,C,A));
draw(C--extension(C,target,A,B));
}
draw_cevians(H);
draw_cevians(G);
draw_cevians(I);
draw(unitcircle);
draw(circumcircle(D,E,F));
draw(O--P);
draw(O--Q);
draw(P--Q);
draw(CP(X,foot(X,B,C)));
draw(CP(Y,foot(Y,C,A)));
draw(CP(Z,foot(Z,A,B)));
draw(J--K--L--M);
draw(X--Y--Z--cycle);
draw(A--X);
draw(B--Y);
draw(C--Z);
draw(A--foot(X,A,B));
draw(A--foot(X,A,C));
draw(B--foot(Y,B,C));
draw(B--foot(Y,B,A));
draw(C--foot(Z,C,A));
draw(C--foot(Z,C,B));
pen p = black;
dot(A, p);
dot(B, p);
dot(C, p);
dot(D, p);
dot(E, p);
dot(F, p);
dot(G, p);
dot(H, p);
dot(I, p);
dot(J, p);
dot(K, p);
dot(L, p);
dot(M, p);
dot(N, p);
dot(O, p);
dot(P, p);
dot(Q, p);
dot(R, p);
dot(S, p);
dot(T, p);
dot(U, p);
dot(V, p);
dot(W, p);
dot(X, p);
dot(Y, p);
dot(Z, p);
[/asy]
2013 Balkan MO Shortlist, G1
In a triangle $ABC$, the excircle $\omega_a$ opposite $A$ touches $AB$ at $P$ and $AC$ at $Q$, while the excircle $\omega_b$ opposite $B$ touches $BA$ at $M$ and $BC$ at $N$. Let $K$ be the projection of $C$ onto $MN$ and let $L$ be the projection of $C$ onto $PQ$. Show that the quadrilateral $MKLP$ is cyclic.
([i]Bulgaria[/i])
1915 Eotvos Mathematical Competition, 2
Triangle $ABC$ lies entirely inside a polygon. Prove that the perimeter of triangle $ABC$ is not greater than that of the polygon.
1993 Poland - First Round, 11
A triangle with perimeter $2p$ is inscribed in a circle of radius $R$ and also circumscribed on a circle of radius $r$. Prove that $p < 2(R+r)$.
1970 IMO Longlists, 50
The area of a triangle is $S$ and the sum of the lengths of its sides is $L$. Prove that $36S \leq L^2\sqrt 3$ and give a necessary and sufficient condition for equality.
2015 Auckland Mathematical Olympiad, 2
A convex quadrillateral $ABCD$ is given and the intersection point of the diagonals is denoted by $O$. Given that the perimeters of the triangles $ABO, BCO, CDO,ADO$ are equal, prove that $ABCD$ is a rhombus.
2021 Novosibirsk Oral Olympiad in Geometry, 3
In triangle $ABC$, side $AB$ is $1$. It is known that one of the angle bisectors of triangle $ABC$ is perpendicular to one of its medians, and some other angle bisector is perpendicular to the other median. What can be the perimeter of triangle $ABC$?
1998 National Olympiad First Round, 12
In a right triangle, ratio of the hypotenuse over perimeter of the triangle determines an interval on real numbers. Find the midpoint of this interval?
$\textbf{(A)}\ \frac{2\sqrt{2} \plus{}1}{4} \qquad\textbf{(B)}\ \frac{\sqrt{2} \plus{}1}{2} \qquad\textbf{(C)}\ \frac{2\sqrt{2} \minus{}1}{4} \\ \qquad\textbf{(D)}\ \sqrt{2} \minus{}1 \qquad\textbf{(E)}\ \frac{\sqrt{2} \minus{}1}{2}$
2004 Bundeswettbewerb Mathematik, 2
Let $k$ be a positive integer. In a circle with radius $1$, finitely many chords are drawn. You know that every diameter of the circle intersects at most $k$ of these chords.
Prove that the sum of the lengths of all these chords is less than $k \cdot \pi$.
2024 OMpD, 2
Let $ABCD$ be a convex quadrilateral, and $M$, $N$, and $P$ be the midpoints of diagonals $AC$ and $BD$, and side $AD$, respectively. Also, suppose that $\angle{ABC} + \angle{DCB} = 90$ and that $AB = 6$, $CD = 8$. Calculate the perimeter of triangle $MNP$.
1957 AMC 12/AHSME, 7
The area of a circle inscribed in an equilateral triangle is $ 48\pi$. The perimeter of this triangle is:
$ \textbf{(A)}\ 72\sqrt{3} \qquad
\textbf{(B)}\ 48\sqrt{3}\qquad
\textbf{(C)}\ 36\qquad
\textbf{(D)}\ 24\qquad
\textbf{(E)}\ 72$
2015 AMC 10, 19
In $\triangle{ABC}$, $\angle{C} = 90^{\circ}$ and $AB = 12$. Squares $ABXY$ and $ACWZ$ are constructed outside of the triangle. The points $X, Y, Z$, and $W$ lie on a circle. What is the perimeter of the triangle?
$ \textbf{(A)}\ 12+9\sqrt{3}\qquad\textbf{(B)}\ 18+6\sqrt{3}\qquad\textbf{(C)}\ 12+12\sqrt{2}\qquad\textbf{(D)}\ 30\qquad\textbf{(E)}\ 32 $
1985 AMC 8, 19
If the length and width of a rectangle are each increased by $ 10 \%$, then the perimeter of the rectangle is increased by
\[ \textbf{(A)}\ 1 \% \qquad
\textbf{(B)}\ 10 \% \qquad
\textbf{(C)}\ 20 \% \qquad
\textbf{(D)}\ 21 \% \qquad
\textbf{(E)}\ 40 \%
\]
2005 Tournament of Towns, 4
Two ants crawl along the perimeter of a polygonal table, so that the distance between them is always $10$ cm. Each side of the table is more than $1$ meter long. At the initial moment both ants are on the same side of the table.
(a) [i](2 points)[/i] Suppose that the table is a convex polygon. Is it always true that both ants can visit each point on the perimeter?
(b) [i](4 points)[/i] Is it always true (this time without assumption of convexity) that each point on the perimeter can be visited by at least one ant?
2002 Brazil National Olympiad, 2
$ABCD$ is a cyclic quadrilateral and $M$ a point on the side $CD$ such that $ADM$ and $ABCM$ have the same area and the same perimeter. Show that two sides of $ABCD$ have the same length.
2008 Iran MO (3rd Round), 4
=A subset $ S$ of $ \mathbb R^2$ is called an algebraic set if and only if there is a polynomial $ p(x,y)\in\mathbb R[x,y]$ such that
\[ S \equal{} \{(x,y)\in\mathbb R^2|p(x,y) \equal{} 0\}
\]
Are the following subsets of plane an algebraic sets?
1. A square
[img]http://i36.tinypic.com/28uiaep.png[/img]
2. A closed half-circle
[img]http://i37.tinypic.com/155m155.png[/img]
1999 India National Olympiad, 1
Let $ABC$ be an acute-angled triangle in which $D,E,F$ are points on $BC,CA,AB$ respectively such that $AD \perp BC$;$AE = BC$; and $CF$ bisects $\angle C$ internally, Suppose $CF$ meets $AD$ and $DE$ in $M$ and $N$ respectively. If $FM$$= 2$, $MN =1$, $NC=3$, find the perimeter of $\Delta ABC$.