This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 396

1971 IMO Longlists, 10

In how many different ways can three knights be placed on a chessboard so that the number of squares attacked would be maximal?

1996 Korea National Olympiad, 1

If you draw $4$ points on the unit circle, prove that you can always find two points where their distance between is less than $\sqrt{2}.$

2006 India IMO Training Camp, 2

Let $u_{jk}$ be a real number for each $j=1,2,3$ and each $k=1,2$ and let $N$ be an integer such that \[\max_{1\le k \le 2} \sum_{j=1}^3 |u_{jk}| \leq N\] Let $M$ and $l$ be positive integers such that $l^2 <(M+1)^3$. Prove that there exist integers $\xi_1,\xi_2,\xi_3$ not all zero, such that \[\max_{1\le j \le 3}\xi_j \le M\ \ \ \ \text{and} \ \ \ \left|\sum_{j=1}^3 u_{jk}\xi_k\right| \le \frac{MN}{l} \ \ \ \ \text{for k=1,2}\]

2012 ELMO Shortlist, 4

A tournament on $2k$ vertices contains no $7$-cycles. Show that its vertices can be partitioned into two sets, each with size $k$, such that the edges between vertices of the same set do not determine any $3$-cycles. [i]Calvin Deng.[/i]

2001 District Olympiad, 1

For any $n\in \mathbb{N}^*$, let $H_n=\left\{\frac{k}{n!}\ |\ k\in \mathbb{Z}\right\}$. a) Prove that $H_n$ is a subgroup of the group $(Q,+)$ and that $Q=\bigcup_{n\in \mathbb{N}^*} H_n$; b) Prove that if $G_1,G_2,\ldots, G_m$ are subgroups of the group $(Q,+)$ and $G_i\neq Q,\ (\forall) 1\le i\le m$, then $G_1\cup G_2\cup \ldots \cup G_m\neq Q$ [i]Marian Andronache & Ion Savu[/i]

2001 Polish MO Finals, 3

Given positive integers $n_1<n_2<...<n_{2000}<10^{100}$. Prove that we can choose from the set $\{n_1,...,n_{2000}\}$ nonempty, disjont sets $A$ and $B$ which have the same number of elements, the same sum and the same sum of squares.

2015 European Mathematical Cup, 1

$A = \{a, b, c\}$ is a set containing three positive integers. Prove that we can find a set $B \subset A$, $B = \{x, y\}$ such that for all odd positive integers $m, n$ we have $$10\mid x^my^n-x^ny^m.$$ [i]Tomi Dimovski[/i]

2008 District Olympiad, 3

In a school there are $ 10$ rooms. Each student from a room knows exactly one student from each one of the other $ 9$ rooms. Prove that the rooms have the same number of students (we suppose that if $ A$ knows $ B$ then $ B$ knows $ A$).

2015 India National Olympiad, 6

Show that from a set of $11$ square integers one can select six numbers $a^2,b^2,c^2,d^2,e^2,f^2$ such that $a^2+b^2+c^2 \equiv d^2+e^2+f^2\pmod{12}$.

2004 China Girls Math Olympiad, 8

When the unit squares at the four corners are removed from a three by three squares, the resulting shape is called a cross. What is the maximum number of non-overlapping crosses placed within the boundary of a $ 10\times 11$ chessboard? (Each cross covers exactly five unit squares on the board.)

2004 Germany Team Selection Test, 3

We consider graphs with vertices colored black or white. "Switching" a vertex means: coloring it black if it was formerly white, and coloring it white if it was formerly black. Consider a finite graph with all vertices colored white. Now, we can do the following operation: Switch a vertex and simultaneously switch all of its neighbours (i. e. all vertices connected to this vertex by an edge). Can we, just by performing this operation several times, obtain a graph with all vertices colored black? [It is assumed that our graph has no loops (a [i]loop[/i] means an edge connecting one vertex with itself) and no multiple edges (a [i]multiple edge[/i] means a pair of vertices connected by more than one edge).]

1987 IMO Longlists, 20

Let $x_1,x_2,\ldots,x_n$ be real numbers satisfying $x_1^2+x_2^2+\ldots+x_n^2=1$. Prove that for every integer $k\ge2$ there are integers $a_1,a_2,\ldots,a_n$, not all zero, such that $|a_i|\le k-1$ for all $i$, and $|a_1x_1+a_2x_2+\ldots+a_nx_n|\le{(k-1)\sqrt n\over k^n-1}$. [i](IMO Problem 3)[/i] [i]Proposed by Germany, FR[/i]

2009 Belarus Team Selection Test, 2

In the coordinate plane consider the set $ S$ of all points with integer coordinates. For a positive integer $ k$, two distinct points $A$, $ B\in S$ will be called $ k$-[i]friends[/i] if there is a point $ C\in S$ such that the area of the triangle $ ABC$ is equal to $ k$. A set $ T\subset S$ will be called $ k$-[i]clique[/i] if every two points in $ T$ are $ k$-friends. Find the least positive integer $ k$ for which there exits a $ k$-clique with more than 200 elements. [i]Proposed by Jorge Tipe, Peru[/i]

2001 Irish Math Olympiad, 2

Three hoops are arranged concentrically as in the diagram. Each hoop is threaded with $ 20$ beads, $ 10$ of which are black and $ 10$ are white. On each hoop the positions of the beads are labelled $ 1$ through $ 20$ as shown. We say there is a match at position $ i$ if all three beads at position $ i$ have the same color. We are free to slide beads around a hoop, not breaking the hoop. Show that it is always possible to move them into a configuration involving no less than $ 5$ matches.

2014 USAJMO, 4

Let $b\geq 2$ be an integer, and let $s_b(n)$ denote the sum of the digits of $n$ when it is written in base $b$. Show that there are infinitely many positive integers that cannot be represented in the form $n+s_b(n)$, where $n$ is a positive integer.

2003 Manhattan Mathematical Olympiad, 4

Prove that from any set of one hundred different whole numbers one can choose either one number which is divisible by $100$, or several numbers whose sum is divisible by $100$.

2009 Indonesia TST, 1

a. Does there exist 4 distinct positive integers such that the sum of any 3 of them is prime? b. Does there exist 5 distinct positive integers such that the sum of any 3 of them is prime?

2006 Putnam, B2

Prove that, for every set $X=\{x_{1},x_{2},\dots,x_{n}\}$ of $n$ real numbers, there exists a non-empty subset $S$ of $X$ and an integer $m$ such that \[\left|m+\sum_{s\in S}s\right|\le\frac1{n+1}\]

1988 Polish MO Finals, 2

The sequence $a_1, a_2, a_3, ...$ is defined by $a_1 = a_2 = a_3 = 1$, $a_{n+3} = a_{n+2}a_{n+1} + a_n$. Show that for any positive integer $r$ we can find $s$ such that $a_s$ is a multiple of $r$.

2017 India Regional Mathematical Olympiad, 4

Consider \(n^2\) unit squares in the \(xy\) plane centered at point \((i,j)\) with integer coordinates, \(1 \leq i \leq n\), \(1 \leq j \leq n\). It is required to colour each unit square in such a way that whenever \(1 \leq i < j \leq n\) and \(1 \leq k < l \leq n\), the three squares with centres at \((i,k),(j,k),(j,l)\) have distinct colours. What is the least possible number of colours needed?

2010 All-Russian Olympiad, 2

Each of $1000$ elves has a hat, red on the inside and blue on the outside or vise versa. An elf with a hat that is red outside can only lie, and an elf with a hat that is blue outside can only tell the truth. One day every elf tells every other elf, “Your hat is red on the outside.” During that day, some of the elves turn their hats inside out at any time during the day. (An elf can do that more than once per day.) Find the smallest possible number of times any hat is turned inside out.

2022 Estonia Team Selection Test, 4

Let $n\ge 3$ be a fixed integer. There are $m\ge n+1$ beads on a circular necklace. You wish to paint the beads using $n$ colors, such that among any $n+1$ consecutive beads every color appears at least once. Find the largest value of $m$ for which this task is $\emph{not}$ possible. [i]Carl Schildkraut, USA[/i]

2009 USAMO, 2

Let $n$ be a positive integer. Determine the size of the largest subset of $\{ -n, -n+1, \dots, n-1, n\}$ which does not contain three elements $a$, $b$, $c$ (not necessarily distinct) satisfying $a+b+c=0$.

2012 Iran MO (3rd Round), 3

Prove that if $n$ is large enough, among any $n$ points of plane we can find $1000$ points such that these $1000$ points have pairwise distinct distances. Can you prove the assertion for $n^{\alpha}$ where $\alpha$ is a positive real number instead of $1000$?

2014 All-Russian Olympiad, 4

Given are $n$ pairwise intersecting convex $k$-gons on the plane. Any of them can be transferred to any other by a homothety with a positive coefficient. Prove that there is a point in a plane belonging to at least $1 +\frac{n-1}{2k}$ of these $k$-gons.