Found problems: 396
2012 Canadian Mathematical Olympiad Qualification Repechage, 1
The front row of a movie theatre contains $45$ seats.
[list]
[*] (a) If $42$ people are sitting in the front row, prove that there are $10$ consecutive seats that are all occupied.
[*] (b) Show that this conclusion doesn’t necessarily hold if only $41$ people are sitting in the front row.[/list]
2021 Iran MO (3rd Round), 3
Let $n\ge 3$ be a fixed integer. There are $m\ge n+1$ beads on a circular necklace. You wish to paint the beads using $n$ colors, such that among any $n+1$ consecutive beads every color appears at least once. Find the largest value of $m$ for which this task is $\emph{not}$ possible.
[i]Carl Schildkraut, USA[/i]
2013 Online Math Open Problems, 43
In a tennis tournament, each competitor plays against every other competitor, and there are no draws. Call a group of four tennis players ``ordered'' if there is a clear winner and a clear loser (i.e., one person who beat the other three, and one person who lost to the other three.) Find the smallest integer $n$ for which any tennis tournament with $n$ people has a group of four tennis players that is ordered.
[i]Ray Li[/i]
2014 USAMTS Problems, 4:
Nine distinct positive integers are arranged in a circle such that the product of any two non-adjacent numbers in the circle is a multiple of $n$ and the product of any two adjacent numbers in the circle is not a multiple of $n$, where $n$ is a fixed positive integer. Find the smallest possible value for $n$.
1978 IMO Shortlist, 1
The set $M = \{1, 2, . . . , 2n\}$ is partitioned into $k$ nonintersecting subsets $M_1,M_2, \dots, M_k,$ where $n \ge k^3 + k.$ Prove that there exist even numbers $2j_1, 2j_2, \dots, 2j_{k+1}$ in $M$ that are in one and the same subset $M_i$ $(1 \le i \le k)$ such that the numbers $2j_1 - 1, 2j_2 - 1, \dots, 2j_{k+1} - 1$ are also in one and the same subset $M_j (1 \le j \le k).$
2003 AIME Problems, 12
The members of a distinguished committee were choosing a president, and each member gave one vote to one of the $27$ candidates. For each candidate, the exact percentage of votes the candidate got was smaller by at least $1$ than the number of votes for that candidate. What is the smallest possible number of members of the committee?
1995 Baltic Way, 20
All the vertices of a convex pentagon are on lattice points. Prove that the area of the pentagon is at least $\frac{5}{2}$.
[i]Bogdan Enescu[/i]
2010 Albania National Olympiad, 3
[b](a)[/b]Prove that every pentagon with integral coordinates has at least two vertices , whose respective coordinates have the same parity.
[b](b)[/b]What is the smallest area possible of pentagons with integral coordinates.
Albanian National Mathematical Olympiad 2010---12 GRADE Question 3.
1993 Iran MO (2nd round), 3
Let $n, r$ be positive integers. Find the smallest positive integer $m$ satisfying the following condition. For each partition of the set $\{1, 2, \ldots ,m \}$ into $r$ subsets $A_1,A_2, \ldots ,A_r$, there exist two numbers $a$ and $b$ in some $A_i, 1 \leq i \leq r$, such that
\[ 1 < \frac ab < 1 +\frac 1n.\]
2007 IMAC Arhimede, 4
Prove that for any given number $a_k, 1 \le k \le 5$, there are $\lambda_k \in \{-1, 0, 1\}, 1 \le k \le 5$, which are not all equal zero, such that $11 | \lambda_1a_1^2+\lambda_2a_2^2+\lambda_3a_3^2+\lambda_4a_4^2+\lambda_5a_5^2$
2011 Croatia Team Selection Test, 1
We define a sequence $a_n$ so that $a_0=1$ and
\[a_{n+1} = \begin{cases} \displaystyle \frac{a_n}2 & \textrm { if } a_n \equiv 0 \pmod 2, \\ a_n + d & \textrm{ otherwise. } \end{cases} \]
for all postive integers $n$.
Find all positive integers $d$ such that there is some positive integer $i$ for which $a_i=1$.
2020 IMO Shortlist, C3
There is an integer $n > 1$. There are $n^2$ stations on a slope of a mountain, all at different altitudes. Each of two cable car companies, $A$ and $B$, operates $k$ cable cars; each cable car provides a transfer from one of the stations to a higher one (with no intermediate stops). The $k$ cable cars of $A$ have $k$ different starting points and $k$ different finishing points, and a cable car which starts higher also finishes higher. The same conditions hold for $B$. We say that two stations are linked by a company if one can start from the lower station and reach the higher one by using one or more cars of that company (no other movements between stations are allowed). Determine the smallest positive integer $k$ for which one can guarantee that there are two stations that are linked by both companies.
[i]Proposed by Tejaswi Navilarekallu, India[/i]
1996 Flanders Math Olympiad, 3
Consider the points $1,\frac12,\frac13,...$ on the real axis. Find the smallest value $k \in \mathbb{N}_0$ for which all points above can be covered with 5 [b]closed[/b] intervals of length $\frac1k$.
2021 Science ON all problems, 3
Consider positive integers $a<b$ and the set $C\subset\{a,a+1,a+2,\dots ,b-2,b-1,b\}$. Suppose $C$ has more than $\frac{b-a+1}{2}$ elements. Prove that there are two elements $x,y\in C$ that satisfy $x+y=a+b$.
[i] (From "Radu Păun" contest, Radu Miculescu)[/i]
1985 IMO Shortlist, 1
Given a set $M$ of $1985$ positive integers, none of which has a prime divisor larger than $26$, prove that the set has four distinct elements whose geometric mean is an integer.
2013 Moldova Team Selection Test, 2
Let $a_n=1+n!(\frac{1}{0!}+\frac{1}{1!}+\frac{1}{2!}+...+\frac{1}{n!})$ for any $n\in \mathbb{Z}^{+}$. Consider $a_n$ points in the plane,no $3$ of them collinear.The segments between any $2$ of them are colored in one of $n$ colors. Prove that among them there exist $3$ points forming a monochromatic triangle.
2022 Brazil Team Selection Test, 1
Let $n\ge 3$ be a fixed integer. There are $m\ge n+1$ beads on a circular necklace. You wish to paint the beads using $n$ colors, such that among any $n+1$ consecutive beads every color appears at least once. Find the largest value of $m$ for which this task is $\emph{not}$ possible.
[i]Carl Schildkraut, USA[/i]
2013 China Team Selection Test, 2
For the positive integer $n$, define $f(n)=\min\limits_{m\in\Bbb Z}\left|\sqrt2-\frac mn\right|$. Let $\{n_i\}$ be a strictly increasing sequence of positive integers. $C$ is a constant such that $f(n_i)<\dfrac C{n_i^2}$ for all $i\in\{1,2,\ldots\}$. Show that there exists a real number $q>1$ such that $n_i\geqslant q^{i-1}$ for all $i\in\{1,2,\ldots \}$.
2008 Romania Team Selection Test, 3
Let $ n \geq 3$ be a positive integer and let $ m \geq 2^{n\minus{}1}\plus{}1$. Prove that for each family of nonzero distinct subsets $ (A_j)_{j \in \overline{1, m}}$ of $ \{1, 2, ..., n\}$ there exist $ i$, $ j$, $ k$ such that $ A_i \cup A_j \equal{} A_k$.
2012 Belarus Team Selection Test, 1
Consider a polynomial $P(x) = \prod^9_{j=1}(x+d_j),$ where $d_1, d_2, \ldots d_9$ are nine distinct integers. Prove that there exists an integer $N,$ such that for all integers $x \geq N$ the number $P(x)$ is divisible by a prime number greater than 20.
[i]Proposed by Luxembourg[/i]
1994 China National Olympiad, 2
There are $m$ pieces of candy held in $n$ trays($n,m\ge 4$). An [i]operation[/i] is defined as follow: take out one piece of candy from any two trays respectively, then put them in a third tray. Determine, with proof, if we can move all candies to a single tray by finite [i]operations[/i].
2006 National Olympiad First Round, 32
What is the greatest integer $k$ which makes the statement "When we take any $6$ subsets with $5$ elements of the set $\{1,2,\dots, 9\}$, there exist $k$ of them having at least one common element." true?
$
\textbf{(A)}\ 1
\qquad\textbf{(B)}\ 2
\qquad\textbf{(C)}\ 3
\qquad\textbf{(D)}\ 4
\qquad\textbf{(E)}\ 5
$
1999 National Olympiad First Round, 35
Flights are arranged between 13 countries. For $ k\ge 2$, the sequence $ A_{1} ,A_{2} ,\ldots A_{k}$ is said to a cycle if there exist a flight from $ A_{1}$ to $ A_{2}$, from $ A_{2}$ to $ A_{3}$, $ \ldots$, from $ A_{k \minus{} 1}$ to $ A_{k}$, and from $ A_{k}$ to $ A_{1}$. What is the smallest possible number of flights such that how the flights are arranged, there exist a cycle?
$\textbf{(A)}\ 14 \qquad\textbf{(B)}\ 53 \qquad\textbf{(C)}\ 66 \qquad\textbf{(D)}\ 79 \qquad\textbf{(E)}\ 156$
2002 USA Team Selection Test, 4
Let $n$ be a positive integer and let $S$ be a set of $2^n+1$ elements. Let $f$ be a function from the set of two-element subsets of $S$ to $\{0, \dots, 2^{n-1}-1\}$. Assume that for any elements $x, y, z$ of $S$, one of $f(\{x,y\}), f(\{y,z\}), f(\{z, x\})$ is equal to the sum of the other two. Show that there exist $a, b, c$ in $S$ such that $f(\{a,b\}), f(\{b,c\}), f(\{c,a\})$ are all equal to 0.
1998 IberoAmerican, 1
There are representants from $n$ different countries sit around a circular table ($n\geq2$), in such way that if two representants are from the same country, then, their neighbors to the right are not from the same country. Find, for every $n$, the maximal number of people that can be sit around the table.