Found problems: 396
2012 Regional Olympiad of Mexico Center Zone, 1
Consider the set:
$A = \{1, 2,..., 100\}$
Prove that if we take $11$ different elements from $A$, there are $x, y$ such that $x \neq y$ and $0 < |\sqrt{x} - \sqrt{y}| < 1$
2003 Romania National Olympiad, 2
In a meeting there are 6 participants. It is known that among them there are seven pairs of friends and in any group of three persons there are at least two friends. Prove that:
(a) there exists a person who has at least three friends;
(b) there exists three persons who are friends with each other.
[i]Valentin Vornicu[/i]
2014 Contests, 2
Let $n \ge 2$ be an integer. Consider an $n \times n$ chessboard consisting of $n^2$ unit squares. A configuration of $n$ rooks on this board is [i]peaceful[/i] if every row and every column contains exactly one rook. Find the greatest positive integer $k$ such that, for each peaceful configuration of $n$ rooks, there is a $k \times k$ square which does not contain a rook on any of its $k^2$ unit squares.
1987 IMO Shortlist, 15
Let $x_1,x_2,\ldots,x_n$ be real numbers satisfying $x_1^2+x_2^2+\ldots+x_n^2=1$. Prove that for every integer $k\ge2$ there are integers $a_1,a_2,\ldots,a_n$, not all zero, such that $|a_i|\le k-1$ for all $i$, and $|a_1x_1+a_2x_2+\ldots+a_nx_n|\le{(k-1)\sqrt n\over k^n-1}$. [i](IMO Problem 3)[/i]
[i]Proposed by Germany, FR[/i]
1994 Iran MO (2nd round), 1
Let $\overline{a_1a_2a_3\ldots a_n}$ be the representation of a $n-$digits number in base $10.$ Prove that there exists a one-to-one function like $f : \{0, 1, 2, 3, \ldots, 9\} \to \{0, 1, 2, 3, \ldots, 9\}$ such that $f(a_1) \neq 0$ and the number $\overline{ f(a_1)f(a_2)f(a_3) \ldots f(a_n) }$ is divisible by $3.$
1997 Turkey MO (2nd round), 3
Let $n$ and $k$ be positive integers, where $n > 1$ is odd. Suppose $n$ voters are to elect one of the $k$ cadidates from a set $A$ according to the rule of "majoritarian compromise" described below. After each voter ranks the candidates in a column according to his/her preferences, these columns are concatenated to form a $k$ x $n$ voting matrix. We denote the number of ccurences of $a \in A$ in the $i$-th row of the voting matrix by $a_{i}$ . Let $l_{a}$ stand for the minimum integer $l$ for which $\sum^{l}_{i=1}{a_{i}}> \frac{n}{2}$.
Setting $l'= min \{l_{a} | a \in A\}$, we will regard the voting matrices which make the set $\{a \in A | l_{a} = l' \}$ as admissible. For each such matrix, the single candidate in this set will get elected according to majoritarian compromise. Moreover, if $w_{1} \geq w_{2} \geq ... \geq w_{k} \geq 0$ are given, for each admissible voting matrix, $\sum^{k}_{i=1}{w_{i}a_{i}}$ is called the total weighted score of $a \in A$. We will say that the system $(w_{1},w_{2}, . . . , w_{k})$ of weights represents majoritarian compromise if the total score of the elected candidate is maximum among the scores of all candidates.
(a) Determine whether there is a system of weights representing majoritarian compromise if $k = 3$.
(b) Show that such a system of weights does not exist for $k > 3$.
2012 ELMO Shortlist, 5
Prove that if $m,n$ are relatively prime positive integers, $x^m-y^n$ is irreducible in the complex numbers. (A polynomial $P(x,y)$ is irreducible if there do not exist nonconstant polynomials $f(x,y)$ and $g(x,y)$ such that $P(x,y) = f(x,y)g(x,y)$ for all $x,y$.)
[i]David Yang.[/i]
2001 China National Olympiad, 3
Let $P$ be a regular $n$-gon $A_1A_2\ldots A_n$. Find all positive integers $n$ such that for each permutation $\sigma (1),\sigma (2),\ldots ,\sigma (n)$ there exists $1\le i,j,k\le n$ such that the triangles $A_{i}A_{j}A_{k}$ and $A_{\sigma (i)}A_{\sigma (j)}A_{\sigma (k)}$ are both acute, both right or both obtuse.
2007 Romania Team Selection Test, 4
Let $S$ be the set of $n$-uples $\left( x_{1}, x_{2}, \ldots, x_{n}\right)$ such that $x_{i}\in \{ 0, 1 \}$ for all $i \in \overline{1,n}$, where $n \geq 3$. Let $M(n)$ be the smallest integer with the property that any subset of $S$ with at least $M(n)$ elements contains at least three $n$-uples \[\left( x_{1}, \ldots, x_{n}\right), \, \left( y_{1}, \ldots, y_{n}\right), \, \left( z_{1}, \ldots, z_{n}\right) \] such that
\[\sum_{i=1}^{n}\left( x_{i}-y_{i}\right)^{2}= \sum_{i=1}^{n}\left( y_{i}-z_{i}\right)^{2}= \sum_{i=1}^{n}\left( z_{i}-x_{i}\right)^{2}. \]
(a) Prove that $M(n) \leq \left\lfloor \frac{2^{n+1}}{n}\right\rfloor+1$.
(b) Compute $M(3)$ and $M(4)$.
2003 Gheorghe Vranceanu, 4
Prove that among any $ 16 $ numbers smaller than $ 101 $ there are four of them that have the property that the sum of two of them is equal to the sum of the other two.
2024 Auckland Mathematical Olympiad, 8
There are $25$ points on the plane, and among any three of them there are two at a distance less than $1$. Prove that there is a circle of radius $1$ containing at least $13$ of these points.
1993 IberoAmerican, 2
Let $P$ and $Q$ be two distinct points in the plane. Let us denote by $m(PQ)$ the segment bisector of $PQ$. Let $S$ be a finite subset of the plane, with more than one element, that satisfies the following properties:
(i) If $P$ and $Q$ are in $S$, then $m(PQ)$ intersects $S$.
(ii) If $P_1Q_1, P_2Q_2, P_3Q_3$ are three diferent segments such that its endpoints are points of $S$, then, there is non point in $S$ such that it intersects the three lines $m(P_1Q_1)$, $m(P_2Q_2)$, and $m(P_3Q_3)$.
Find the number of points that $S$ may contain.
2005 Taiwan TST Round 2, 2
Starting from a positive integer $n$, we can replace the current number with a multiple of the current number or by deleting one or more zeroes from the decimal representation of the current number. Prove that for all values of $n$, it is possible to obtain a single-digit number by applying the above algorithm a finite number of times.
There is a nice solution to this...
2009 Indonesia TST, 1
a. Does there exist 4 distinct positive integers such that the sum of any 3 of them is prime?
b. Does there exist 5 distinct positive integers such that the sum of any 3 of them is prime?
1995 USAMO, 5
Suppose that in a certain society, each pair of persons can be classified as either [i]amicable [/i]or [i]hostile[/i]. We shall say that each member of an amicable pair is a [i]friend[/i] of the other, and each member of a hostile pair is a [i]foe[/i] of the other. Suppose that the society has $\, n \,$ persons and $\, q \,$ amicable pairs, and that for every set of three persons, at least one pair is hostile. Prove that there is at least one member of the society whose foes include $\, q(1 - 4q/n^2) \,$ or fewer amicable pairs.
2001 German National Olympiad, 2
Determine the maximum possible number of points you can place in a rectangle with lengths $14$ and $28$ such that any two of those points are more than $10$ apart from each other.
1960 Putnam, A2
Show that if three points are inside are closed square of unit side, then some pair of them are within $\sqrt{6}-\sqrt{2}$ units apart.
1989 IMO Longlists, 53
Let $ \alpha$ be the positive root of the equation $ x^2 \minus{} 1989x \minus{} 1 \equal{} 0.$ Prove that there exist infinitely many natural numbers $ n$ that satisfy the equation:
\[ \lfloor \alpha n \plus{} 1989 \alpha \lfloor \alpha n \rfloor \rfloor \equal{} 1989n \plus{} \left( 1989^2 \plus{} 1 \right) \lfloor \alpha n \rfloor.\]
2012 Indonesia TST, 4
Determine all natural numbers $n$ such that for each natural number $a$ relatively prime with $n$ and $a \le 1 + \left\lfloor \sqrt{n} \right\rfloor$ there exists some integer $x$ with $a \equiv x^2 \mod n$.
Remark: "Natural numbers" is the set of positive integers.
2008 Brazil National Olympiad, 1
A positive integer is [i]dapper[/i] if at least one of its multiples begins with $ 2008$. For example, $ 7$ is dapper because $ 200858$ is a multiple of $ 7$ and begins with $ 2008$. Observe that $ 200858 \equal{} 28694\times 7$.
Prove that every positive integer is dapper.
2014 Contests, 4
Let $n$ and $b$ be positive integers. We say $n$ is $b$-discerning if there exists a set consisting of $n$ different positive integers less than $b$ that has no two different subsets $U$ and $V$ such that the sum of all elements in $U$ equals the sum of all elements in $V$.
(a) Prove that $8$ is $100$-discerning.
(b) Prove that $9$ is not $100$-discerning.
[i]Senior Problems Committee of the Australian Mathematical Olympiad Committee[/i]
2014 Turkey Junior National Olympiad, 3
There are $2014$ balls with $106$ different colors, $19$ of each color. Determine the least possible value of $n$ so that no matter how these balls are arranged around a circle, one can choose $n$ consecutive balls so that amongst them, there are $53$ balls with different colors.
2004 Romania National Olympiad, 4
In the interior of a cube of side $6$ there are $1001$ unit cubes with the faces parallel to the faces of the given cube. Prove that there are $2$ unit cubes with the property that the center of one of them lies in the interior or on one of the faces of the other cube.
[i]Dinu Serbanescu[/i]
2025 All-Russian Olympiad, 10.7
A competition consists of $25$ sports, each awarding one gold medal to a winner. $25$ athletes participate, each in all $25$ sports. There are also $25$ experts, each of whom must predict the number of gold medals each athlete will win. In each prediction, the medal counts must be non-negative integers summing to $25$. An expert is called competent if they correctly guess the number of gold medals for at least one athlete. What is the maximum number \( k \) such that the experts can make their predictions so that at least \( k \) of them are guaranteed to be competent regardless of the outcome? \\
Russian TST 2022, P1
Let $n\ge 3$ be a fixed integer. There are $m\ge n+1$ beads on a circular necklace. You wish to paint the beads using $n$ colors, such that among any $n+1$ consecutive beads every color appears at least once. Find the largest value of $m$ for which this task is $\emph{not}$ possible.
[i]Carl Schildkraut, USA[/i]