This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85

1985 IMO Shortlist, 14

A set of $1985$ points is distributed around the circumference of a circle and each of the points is marked with $1$ or $-1$. A point is called “good” if the partial sums that can be formed by starting at that point and proceeding around the circle for any distance in either direction are all strictly positive. Show that if the number of points marked with $-1$ is less than $662$, there must be at least one good point.

1983 IMO Shortlist, 17

Let $P_1, P_2, \dots , P_n$ be distinct points of the plane, $n \geq 2$. Prove that \[ \max_{1\leq i<j\leq n} P_iP_j > \frac{\sqrt 3}{2}(\sqrt n -1) \min_{1\leq i<j\leq n} P_iP_j \]

1992 IMO Longlists, 38

Let $\,S\,$ be a finite set of points in three-dimensional space. Let $\,S_{x},\,S_{y},\,S_{z}\,$ be the sets consisting of the orthogonal projections of the points of $\,S\,$ onto the $yz$-plane, $zx$-plane, $xy$-plane, respectively. Prove that \[ \vert S\vert^{2}\leq \vert S_{x} \vert \cdot \vert S_{y} \vert \cdot \vert S_{z} \vert, \] where $\vert A \vert$ denotes the number of elements in the finite set $A$. [hide="Note"] Note: The orthogonal projection of a point onto a plane is the foot of the perpendicular from that point to the plane. [/hide]

1992 IMO Shortlist, 10

Let $\,S\,$ be a finite set of points in three-dimensional space. Let $\,S_{x},\,S_{y},\,S_{z}\,$ be the sets consisting of the orthogonal projections of the points of $\,S\,$ onto the $yz$-plane, $zx$-plane, $xy$-plane, respectively. Prove that \[ \vert S\vert^{2}\leq \vert S_{x} \vert \cdot \vert S_{y} \vert \cdot \vert S_{z} \vert, \] where $\vert A \vert$ denotes the number of elements in the finite set $A$. [hide="Note"] Note: The orthogonal projection of a point onto a plane is the foot of the perpendicular from that point to the plane. [/hide]

2010 Indonesia TST, 2

Find maximal numbers of planes, such there are $6$ points and 1) $4$ or more points lies on every plane. 2) No one line passes through $4$ points.

1998 IMO Shortlist, 6

Ten points are marked in the plane so that no three of them lie on a line. Each pair of points is connected with a segment. Each of these segments is painted with one of $k$ colors, in such a way that for any $k$ of the ten points, there are $k$ segments each joining two of them and no two being painted with the same color. Determine all integers $k$, $1\leq k\leq 10$, for which this is possible.

1972 IMO Longlists, 20

Let $n_1, n_2$ be positive integers. Consider in a plane $E$ two disjoint sets of points $M_1$ and $M_2$ consisting of $2n_1$ and $2n_2$ points, respectively, and such that no three points of the union $M_1 \cup M_2$ are collinear. Prove that there exists a straightline $g$ with the following property: Each of the two half-planes determined by $g$ on $E$ ($g$ not being included in either) contains exactly half of the points of $M_1$ and exactly half of the points of $M_2.$

1965 IMO, 6

In a plane a set of $n\geq 3$ points is given. Each pair of points is connected by a segment. Let $d$ be the length of the longest of these segments. We define a diameter of the set to be any connecting segment of length $d$. Prove that the number of diameters of the given set is at most $n$.

2008 IMO Shortlist, 3

In the coordinate plane consider the set $ S$ of all points with integer coordinates. For a positive integer $ k$, two distinct points $A$, $ B\in S$ will be called $ k$-[i]friends[/i] if there is a point $ C\in S$ such that the area of the triangle $ ABC$ is equal to $ k$. A set $ T\subset S$ will be called $ k$-[i]clique[/i] if every two points in $ T$ are $ k$-friends. Find the least positive integer $ k$ for which there exits a $ k$-clique with more than 200 elements. [i]Proposed by Jorge Tipe, Peru[/i]

1967 IMO Longlists, 52

In the plane a point $O$ is and a sequence of points $P_1, P_2, P_3, \ldots$ are given. The distances $OP_1, OP_2, OP_3, \ldots$ are $r_1, r_2, r_3, \ldots$ Let $\alpha$ satisfies $0 < \alpha < 1.$ Suppose that for every $n$ the distance from the point $P_n$ to any other point of the sequence is $\geq r^{\alpha}_n.$ Determine the exponent $\beta$, as large as possible such that for some $C$ independent of $n$ \[r_n \geq Cn^{\beta}, n = 1,2, \ldots\]

1972 IMO Longlists, 8

We are given $3n$ points $A_1,A_2, \ldots , A_{3n}$ in the plane, no three of them collinear. Prove that one can construct $n$ disjoint triangles with vertices at the points $A_i.$

1991 IMO Shortlist, 9

In the plane we are given a set $ E$ of 1991 points, and certain pairs of these points are joined with a path. We suppose that for every point of $ E,$ there exist at least 1593 other points of $ E$ to which it is joined by a path. Show that there exist six points of $ E$ every pair of which are joined by a path. [i]Alternative version:[/i] Is it possible to find a set $ E$ of 1991 points in the plane and paths joining certain pairs of the points in $ E$ such that every point of $ E$ is joined with a path to at least 1592 other points of $ E,$ and in every subset of six points of $ E$ there exist at least two points that are not joined?

2011 IMO, 2

Let $\mathcal{S}$ be a finite set of at least two points in the plane. Assume that no three points of $\mathcal S$ are collinear. A [i]windmill[/i] is a process that starts with a line $\ell$ going through a single point $P \in \mathcal S$. The line rotates clockwise about the [i]pivot[/i] $P$ until the first time that the line meets some other point belonging to $\mathcal S$. This point, $Q$, takes over as the new pivot, and the line now rotates clockwise about $Q$, until it next meets a point of $\mathcal S$. This process continues indefinitely. Show that we can choose a point $P$ in $\mathcal S$ and a line $\ell$ going through $P$ such that the resulting windmill uses each point of $\mathcal S$ as a pivot infinitely many times. [i]Proposed by Geoffrey Smith, United Kingdom[/i]

1972 IMO Shortlist, 2

We are given $3n$ points $A_1,A_2, \ldots , A_{3n}$ in the plane, no three of them collinear. Prove that one can construct $n$ disjoint triangles with vertices at the points $A_i.$

1973 IMO Shortlist, 6

Establish if there exists a finite set $M$ of points in space, not all situated in the same plane, so that for any straight line $d$ which contains at least two points from M there exists another straight line $d'$, parallel with $d,$ but distinct from $d$, which also contains at least two points from $M$.

2009 Greece Team Selection Test, 4

Given are $N$ points on the plane such that no three of them are collinear,which are coloured red,green and black.We consider all the segments between these points and give to each segment a [i]"value"[/i] according to the following conditions: [b]i.[/b]If at least one of the endpoints of a segment is black then the segment's [i]"value"[/i] is $0$. [b]ii.[/b]If the endpoints of the segment have the same colour,re or green,then the segment's [i]"value"[/i] is $1$. [b]iii.[/b]If the endpoints of the segment have different colours but none of them is black,then the segment's [i]"value"[/i] is $-1$. Determine the minimum possible sum of the [i]"values"[/i] of the segments.

1969 IMO Shortlist, 68

$(USS 5)$ Given $5$ points in the plane, no three of which are collinear, prove that we can choose $4$ points among them that form a convex quadrilateral.

1989 IMO Shortlist, 28

Consider in a plane $ P$ the points $ O,A_1,A_2,A_3,A_4$ such that \[ \sigma(OA_iA_j) \geq 1 \quad \forall i, j \equal{} 1, 2, 3, 4, i \neq j.\] where $ \sigma(OA_iA_j)$ is the area of triangle $ OA_iA_j.$ Prove that there exists at least one pair $ i_0, j_0 \in \{1, 2, 3, 4\}$ such that \[ \sigma(OA_iA_j) \geq \sqrt{2}.\]

1969 IMO Longlists, 36

$(HUN 3)$ In the plane $4000$ points are given such that each line passes through at most $2$ of these points. Prove that there exist $1000$ disjoint quadrilaterals in the plane with vertices at these points.

1991 IMO Shortlist, 8

$ S$ be a set of $ n$ points in the plane. No three points of $ S$ are collinear. Prove that there exists a set $ P$ containing $ 2n \minus{} 5$ points satisfying the following condition: In the interior of every triangle whose three vertices are elements of $ S$ lies a point that is an element of $ P.$

1998 China Team Selection Test, 2

Let $n$ be a natural number greater than 2. $l$ is a line on a plane. There are $n$ distinct points $P_1$, $P_2$, …, $P_n$ on $l$. Let the product of distances between $P_i$ and the other $n-1$ points be $d_i$ ($i = 1, 2,$ …, $n$). There exists a point $Q$, which does not lie on $l$, on the plane. Let the distance from $Q$ to $P_i$ be $C_i$ ($i = 1, 2,$ …, $n$). Find $S_n = \sum_{i = 1}^{n} (-1)^{n-i} \frac{c_i^2}{d_i}$.

1971 IMO Shortlist, 2

Prove that for every positive integer $m$ we can find a finite set $S$ of points in the plane, such that given any point $A$ of $S$, there are exactly $m$ points in $S$ at unit distance from $A$.

1995 IMO, 3

Determine all integers $ n > 3$ for which there exist $ n$ points $ A_{1},\cdots ,A_{n}$ in the plane, no three collinear, and real numbers $ r_{1},\cdots ,r_{n}$ such that for $ 1\leq i < j < k\leq n$, the area of $ \triangle A_{i}A_{j}A_{k}$ is $ r_{i} \plus{} r_{j} \plus{} r_{k}$.

1975 IMO Shortlist, 13

Let $A_0,A_1, \ldots , A_n$ be points in a plane such that (i) $A_0A_1 \leq \frac{1}{ 2} A_1A_2 \leq \cdots \leq \frac{1}{2^{n-1} } A_{n-1}A_n$ and (ii) $0 < \measuredangle A_0A_1A_2 < \measuredangle A_1A_2A_3 < \cdots < \measuredangle A_{n-2}A_{n-1}A_n < 180^\circ,$ where all these angles have the same orientation. Prove that the segments $A_kA_{k+1},A_mA_{m+1}$ do not intersect for each $k$ and $n$ such that $0 \leq k \leq m - 2 < n- 2.$

1967 IMO Shortlist, 2

In the space $n \geq 3$ points are given. Every pair of points determines some distance. Suppose all distances are different. Connect every point with the nearest point. Prove that it is impossible to obtain (closed) polygonal line in such a way.