This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 200

1997 Akdeniz University MO, 4

A polygon with $1997$ vertices is given. Write a positive real number each vertex such that, each number equal to its right and left numbers' arithmetic or geometric mean. Prove that all numbers are equal.

2018 Bosnia and Herzegovina Team Selection Test, 3

Find all values of positive integers $a$ and $b$ such that it is possible to put $a$ ones and $b$ zeros in every of vertices in polygon with $a+b$ sides so it is possible to rotate numbers in those vertices with respect to primary position and after rotation one neighboring $0$ and $1$ switch places and in every other vertices other than those two numbers remain the same.

1991 Chile National Olympiad, 2

If a polygon inscribed in a circle is equiangular and has an odd number of sides, prove that it is regular.

2004 Estonia National Olympiad, 5

Let $n$ and $c$ be coprime positive integers. For any integer $i$, denote by $i' $ the remainder of division of product $ci$ by $n$. Let $A_o.A_1,A_2,...,A_{n-1}$ be a regular $n$-gon. Prove that a) if $A_iA_j \parallel A_kA_i$ then $A_{i'}A_{j'} \parallel A_{k'}A_{i'}$ b) if $A_iA_j \perp A_kA_l$ then $A_{i'}A_{j'} \perp A_{k'}A_{l'}$

1966 IMO Shortlist, 41

Given a regular $n$-gon $A_{1}A_{2}...A_{n}$ (with $n\geq 3$) in a plane. How many triangles of the kind $A_{i}A_{j}A_{k}$ are obtuse ?

2004 Germany Team Selection Test, 2

Let $n \geq 5$ be a given integer. Determine the greatest integer $k$ for which there exists a polygon with $n$ vertices (convex or not, with non-selfintersecting boundary) having $k$ internal right angles. [i]Proposed by Juozas Juvencijus Macys, Lithuania[/i]

2022 Baltic Way, 8

For a natural number $n \ge 3$, we draw $n - 3$ internal diagonals in a non self-intersecting, but not necessarily convex, n-gon, cutting the $n$-gon into $n - 2$ triangles. It is known that the value (in degrees) of any angle in any of these triangles is a natural number and no two of these angle values are equal. What is the largest possible value of $n$?

1971 Bulgaria National Olympiad, Problem 5

Let $A_1,A_2,\ldots,A_{2n}$ are the vertices of a regular $2n$-gon and $P$ is a point from the incircle of the polygon. If $\alpha_i=\angle A_iPA_{i+n}$, $i=1,2,\ldots,n$. Prove the equality $$\sum_{i=1}^n\tan^2\alpha_i=2n\frac{\cos^2\frac\pi{2n}}{\sin^4\frac\pi{2n}}.$$

KoMaL A Problems 2019/2020, A. 764

We call a diagonal of a polygon [i]nice[/i], if it is entirely inside the polygon or entirely outside the polygon. Let $P$ be an $n$–gon with no three of its vertices being on the same line. Prove that $P$ has at least $3(n-3)/2$ nice diagonals. [i]Proposed by Bálint Hujter, Budapest and Gábor Szűcs, Szikszó[/i]

2013 India Regional Mathematical Olympiad, 6

Suppose that the vertices of a regular polygon of $20$ sides are coloured with three colours - red, blue and green - such that there are exactly three red vertices. Prove that there are three vertices $A,B,C$ of the polygon having the same colour such that triangle $ABC$ is isosceles.

2006 Tournament of Towns, 5

A square is dissected into $n$ congruent non-convex polygons whose sides are parallel to the sides of the square, and no two of these polygons are parallel translates of each other. What is the maximum value of $n$? (4)

2009 Dutch IMO TST, 5

Suppose that we are given an $n$-gon of which all sides have the same length, and of which all the vertices have rational coordinates. Prove that $n$ is even.

1991 Romania Team Selection Test, 3

Let $C$ be a coloring of all edges and diagonals of a convex $n$−gon in red and blue (in Romanian, rosu and albastru). Denote by $q_r(C)$ (resp. $q_a(C)$) the number of quadrilaterals having all its edges and diagonals red (resp. blue). Prove: $ \underset{C}{min} (q_r(C)+q_a(C)) \le \frac{1}{32} {n \choose 4}$

2012 IFYM, Sozopol, 8

Tags: geometry , polygon
The lengths of the sides of a convex decagon are no greater than 1. Prove that for each inner point $M$ of the decagon there is at least one vertex $A$, for which $MA\leq \frac{\sqrt{5}+1}{2}$.

2006 Sharygin Geometry Olympiad, 8.2

What $n$ is the smallest such that “there is a $n$-gon that can be cut into a triangle, a quadrilateral, ..., a $2006$-gon''?

2017 Baltic Way, 15

Tags: polygon , geometry , angle
Let $n \ge 3$ be an integer. What is the largest possible number of interior angles greater than $180^\circ$ in an $n$-gon in the plane, given that the $n$-gon does not intersect itself and all its sides have the same length?

2004 Germany Team Selection Test, 2

Let $n \geq 5$ be a given integer. Determine the greatest integer $k$ for which there exists a polygon with $n$ vertices (convex or not, with non-selfintersecting boundary) having $k$ internal right angles. [i]Proposed by Juozas Juvencijus Macys, Lithuania[/i]

2021/2022 Tournament of Towns, P4

Tags: geometry , polygon
A convex $n{}$-gon with $n > 4$ is such that if a diagonal cuts a triangle from it then this triangle is isosceles. Prove that there are at least 2 equal sides among any 4 sides of the $n{}$-gon. [i]Maxim Didin[/i]

1976 All Soviet Union Mathematical Olympiad, 233

Given right $n$-gon wit the point $O$ -- its centre. All the vertices are marked either with $+1$ or $-1$. We may change all the signs in the vertices of regular $k$-gon ($2 \le k \le n$) with the same centre $O$. (By $2$-gon we understand a segment, being halved by $O$.) Prove that in a), b) and c) cases there exists such a set of $(+1)$s and $(-1)$s, that we can never obtain a set of $(+1)$s only. a) $n = 15$, b) $n = 30$, c) $n > 2$, d) Let us denote $K(n)$ the maximal number of $(+1)$ and $(-1)$ sets such, that it is impossible to obtain one set from another. Prove, for example, that $K(200) = 2^{80}$

2002 Spain Mathematical Olympiad, Problem 5

Consider $2002$ segments on a plane, such that their lengths are the same. Prove that there exists such a straight line $r$ such that the sum of the lengths of the projections of the $2002$ segments about $r$ is less than $\frac{2}{3}$.

2016 Ukraine Team Selection Test, 1

Consider a regular polygon $A_1A_2\ldots A_{6n+3}$. The vertices $A_{2n+1}, A_{4n+2}, A_{6n+3}$ are called [i]holes[/i]. Initially there are three pebbles in some vertices of the polygon, which are also vertices of equilateral triangle. Players $A$ and $B$ take moves in turn. In each move, starting from $A$, the player chooses pebble and puts it to the next vertex clockwise (for example, $A_2\rightarrow A_3$, $A_{6n+3}\rightarrow A_1$). Player $A$ wins if at least two pebbles lie in holes after someone's move. Does player $A$ always have winning strategy? [i]Proposed by Bohdan Rublov [/i]

Ukrainian TYM Qualifying - geometry, 2015.22

Tags: cyclic , polygon , geometry
Let $A_1A_2... A_{2n + 1}$ be a convex polygon, $a_1 = A_1A_2$, $a_2 ​​= A_2A_3$, $...$, $a_{2n} = A_{2n}A_{2n + 1}$, $a_{2n + 1} = A_{2n + 1}A_1$. Denote by: $\alpha_i = \angle A_i$, $1 \le i \le 2n + 1$, $\alpha_{k + 2n + 1} = \alpha_k$, $k \ge 1$, $ \beta_i = \alpha_{i + 2} + \alpha_{i + 4} +... + \alpha_{i + 2n}$, $1 \le i \le 2n + 1$. Prove what if $$\frac{\alpha_1}{\sin \beta_1}=\frac{\alpha_2}{\sin \beta_2}=...=\frac{\alpha_{2n+1}}{\sin \beta_{2n+1}}$$ then a circle can be circumscribed around this polygon. Does the inverse statement hold a place?

Ukrainian TYM Qualifying - geometry, I.7

Given a natural number $n> 3$. On the plane are considered convex $n$ - gons $F_1$ and $F_2$ such that on each side of $F_1$ lies one vertex of $F_2$ and no two vertices $F_1$ and $F_2$ coincide. For each $n$, determine the limits of the ratio of the areas of the polygons $F_1$ and $F_2$. For each $n$, determine the range of the areas of the polygons $F_1$ and $F_2$, if $F_1$ is a regular $n$-gon. Determine the set of values of this value for other partial cases of the polygon $F_1$.

Estonia Open Junior - geometry, 2017.1.5

Find all possibilities: how many acute angles can there be in a convex polygon?

2024 Indonesia MO, 6

Suppose $A_1 A_2 \ldots A_n$ is an $n$-sided polygon with $n \geq 3$ and $\angle A_j \leq 180^{\circ}$ for each $j$ (in other words, the polygon is convex or has fewer than $n$ distinct sides). For each $i \leq n$, suppose $\alpha_i$ is the smallest possible value of $\angle{A_i A_j A_{i+1}}$ where $j$ is neither $i$ nor $i+1$. (Here, we define $A_{n+1} = A_1$.) Prove that \[ \alpha_1 + \alpha_2 + \cdots + \alpha_n \leq 180^{\circ} \] and determine all equality cases.