Found problems: 200
2024 Indonesia MO, 6
Suppose $A_1 A_2 \ldots A_n$ is an $n$-sided polygon with $n \geq 3$ and $\angle A_j \leq 180^{\circ}$ for each $j$ (in other words, the polygon is convex or has fewer than $n$ distinct sides).
For each $i \leq n$, suppose $\alpha_i$ is the smallest possible value of $\angle{A_i A_j A_{i+1}}$ where $j$ is neither $i$ nor $i+1$. (Here, we define $A_{n+1} = A_1$.) Prove that
\[ \alpha_1 + \alpha_2 + \cdots + \alpha_n \leq 180^{\circ} \] and determine all equality cases.
2006 Germany Team Selection Test, 3
Suppose we have a $n$-gon. Some $n-3$ diagonals are coloured black and some other $n-3$ diagonals are coloured red (a side is not a diagonal), so that no two diagonals of the same colour can intersect strictly inside the polygon, although they can share a vertex. Find the maximum number of intersection points between diagonals coloured differently strictly inside the polygon, in terms of $n$.
[i]Proposed by Alexander Ivanov, Bulgaria[/i]
1967 Polish MO Finals, 5
Prove that if a cyclic polygon with an odd number of sides has all angles equal, then this polygon is regular.
2025 AIME, 12
Let $A_1A_2\dots A_{11}$ be a non-convex $11$-gon such that
- The area of $A_iA_1A_{i+1}$ is $1$ for each $2 \le i \le 10$,
- $\cos(\angle A_iA_1A_{i+1})=\frac{12}{13}$ for each $2 \le i \le 10$,
- The perimeter of $A_1A_2\dots A_{11}$ is $20$.
If $A_1A_2+A_1A_{11}$ can be expressed as $\frac{m\sqrt{n}-p}{q}$ for positive integers $m,n,p,q$ with $n$ squarefree and $\gcd(m,p,q)=1$, find $m+n+p+q$.
2001 Estonia National Olympiad, 1
The angles of a convex $n$-gon are $a,2a, ... ,na$. Find all possible values of $n$ and the corresponding values of $a$.
2010 Sharygin Geometry Olympiad, 7
Each of two regular polygons $P$ and $Q$ was divided by a line into two parts. One part of $P$ was attached to one part of $Q$ along the dividing line so that the resulting polygon was regular and not congruent to $P$ or $Q$. How many sides can it have?
2015 FYROM JBMO Team Selection Test, 5
$A$ and $B$ are two identical convex polygons, each with an area of $2015$. The polygon $A$ is divided into polygons $A_1, A_2,...,A_{2015}$, while $B$ is divided into polygons $B_1, B_2,...,B_{2015}$. Each of these smaller polygons has a positive area. Furthermore, $A_1, A_2,...,A_{2015}$ and $B_1, B_2,...,B_{2015}$ are colored in $2015$ distinct colors, such that $A_i$ and $A_j$ are differently colored for every distinct $i$ and $j$ and $B_i$ and $B_j$ are also differently colored for every distinct $i$ and $j$. After $A$ and $B$ overlap, we calculate the sum of the areas with the same colors. Prove that we can color the polygons such that this sum is at least $1$.
1970 IMO Shortlist, 1
Consider a regular $2n$-gon and the $n$ diagonals of it that pass through its center. Let $P$ be a point of the inscribed circle and let $a_1, a_2, \ldots , a_n$ be the angles in which the diagonals mentioned are visible from the point $P$. Prove that
\[\sum_{i=1}^n \tan^2 a_i = 2n \frac{\cos^2 \frac{\pi}{2n}}{\sin^4 \frac{\pi}{2n}}.\]
2005 Austrian-Polish Competition, 1
For a convex $n$-gon $P_n$, we say that a convex quadrangle $Q$ is a [i]diagonal-quadrangle[/i] of $P_n$, if its vertices are vertices of $P_n$ and its sides are diagonals of $P_n$. Let $d_n$ be the number of diagonal-quadrangles of a convex $n$-gon. Determine $d_n$ for all $n\geq 8$.
1983 Polish MO Finals, 1
On the plane are given a convex $n$-gon $P_1P_2....P_n$ and a point $Q$ inside it, not lying on any of its diagonals. Prove that if $n$ is even, then the number of triangles $P_iP_jP_k$ containing the point $Q$ is even.
1991 Romania Team Selection Test, 3
Let $C$ be a coloring of all edges and diagonals of a convex $n$−gon in red and blue (in Romanian, rosu and albastru). Denote by $q_r(C)$ (resp. $q_a(C)$) the number of quadrilaterals having all its edges and diagonals red (resp. blue).
Prove: $ \underset{C}{min} (q_r(C)+q_a(C)) \le \frac{1}{32} {n \choose 4}$
2017 Baltic Way, 15
Let $n \ge 3$ be an integer. What is the largest possible number of interior angles greater than $180^\circ$ in an $n$-gon in the plane, given that the $n$-gon does not intersect itself and all its sides have the same length?
1992 IMO Longlists, 29
Show that in the plane there exists a convex polygon of 1992 sides satisfying the following conditions:
[i](i)[/i] its side lengths are $ 1, 2, 3, \ldots, 1992$ in some order;
[i](ii)[/i] the polygon is circumscribable about a circle.
[i]Alternative formulation:[/i] Does there exist a 1992-gon with side lengths $ 1, 2, 3, \ldots, 1992$ circumscribed about a circle? Answer the same question for a 1990-gon.
1971 Bulgaria National Olympiad, Problem 5
Let $A_1,A_2,\ldots,A_{2n}$ are the vertices of a regular $2n$-gon and $P$ is a point from the incircle of the polygon. If $\alpha_i=\angle A_iPA_{i+n}$, $i=1,2,\ldots,n$. Prove the equality
$$\sum_{i=1}^n\tan^2\alpha_i=2n\frac{\cos^2\frac\pi{2n}}{\sin^4\frac\pi{2n}}.$$
1996 North Macedonia National Olympiad, 4
A polygon is called [i]good [/i] if it satisfies the following conditions:
(i) All its angles are in $(0,\pi)$ or in $(\pi ,2\pi)$,
(ii) It is not self-intersecing,
(iii) For any three sides, two are parallel and equal.
Find all $n$ for which there exists a [i]good [/i] $n$-gon.
2017 Bulgaria EGMO TST, 1
Prove that every convex polygon has at most one triangulation consisting entirely of acute triangles.
2019 Auckland Mathematical Olympiad, 3
There is a finite number of polygons in a plane and each two of them have a point in common. Prove that there exists a line which crosses every polygon.
Ukrainian TYM Qualifying - geometry, VI.9
Consider an arbitrary (optional convex) polygon. It's [i]chord [/i] is a segment whose ends lie on the boundary of the polygon, and itself belongs entirely to the polygon. Will there always be a chord of a polygon that divides it into two equal parts? Is it true that any polygon can be divided by some chord into parts, the area of each of which is not less than $\frac13$ the area of the polygon?
2007 IMO Shortlist, 8
Given is a convex polygon $ P$ with $ n$ vertices. Triangle whose vertices lie on vertices of $ P$ is called [i]good [/i] if all its sides are unit length. Prove that there are at most $ \frac {2n}{3}$ [i]good[/i] triangles.
[i]Author: Vyacheslav Yasinskiy, Ukraine[/i]
1976 Czech and Slovak Olympiad III A, 5
Let $\mathbf{P}_1,\mathbf{P}_2$ be convex polygons with perimeters $o_1,o_2,$ respectively. Show that if $\mathbf P_1\subseteq\mathbf P_2,$ then $o_1\le o_2.$
1937 Moscow Mathematical Olympiad, 037
Into how many parts can a convex $n$-gon be divided by its diagonals if no three diagonals meet at one point?
1994 IMO Shortlist, 7
Let $ n > 2$. Show that there is a set of $ 2^{n-1}$ points in the plane, no three collinear such that no $ 2n$ form a convex $ 2n$-gon.
2013 India Regional Mathematical Olympiad, 6
Suppose that the vertices of a regular polygon of $20$ sides are coloured with three colours - red, blue and green - such that there are exactly three red vertices. Prove that there are three vertices $A,B,C$ of the polygon having the same colour such that triangle $ABC$ is isosceles.
1979 IMO Shortlist, 1
Prove that in the Euclidean plane every regular polygon having an even number of sides can be dissected into lozenges. (A lozenge is a quadrilateral whose four sides are all of equal length).
1986 IMO, 1
Let $A,B$ be adjacent vertices of a regular $n$-gon ($n\ge5$) with center $O$. A triangle $XYZ$, which is congruent to and initially coincides with $OAB$, moves in the plane in such a way that $Y$ and $Z$ each trace out the whole boundary of the polygon, with $X$ remaining inside the polygon. Find the locus of $X$.