This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 3597

2009 Indonesia TST, 2

Let $ f(x)\equal{}a_{2n}x^{2n}\plus{}a_{2n\minus{}1}x^{2n\minus{}1}\plus{}\cdots\plus{}a_1x\plus{}a_0$, with $ a_i\equal{}a_{2n\minus{}1}$ for all $ i\equal{}1,2,\ldots,n$ and $ a_{2n}\ne0$. Prove that there exists a polynomial $ g(x)$ of degree $ n$ such that $ g\left(x\plus{}\frac1x\right)x^n\equal{}f(x)$.

1988 Romania Team Selection Test, 10

Let $ p > 2$ be a prime number. Find the least positive number $ a$ which can be represented as \[ a \equal{} (X \minus{} 1)f(X) \plus{} (X^{p \minus{} 1} \plus{} X^{p \minus{} 2} \plus{} \cdots \plus{} X \plus{} 1)g(X), \] where $ f(X)$ and $ g(X)$ are integer polynomials. [i]Mircea Becheanu[/i].

1995 South africa National Olympiad, 2

Find all pairs $(m,n)$ of natural numbers with $m<n$ such that $m^2+1$ is a multiple of $n$ and $n^2+1$ is a multiple of $m$.

2015 Gulf Math Olympiad, 4

a) We have a geometric sequence of $3$ terms. If the sum of these terms is $26$ , and their sum of squares is $364$ , find the terms of the sequence. b) Suppose that $a,b,c,u,v,w$ are positive real numbers , and each of $a,b,c$ and $u,v,w$ are geometric sequences. Suppose also that $a+u,b+v,c+w$ are an arithmetic sequence. Prove that $a=b=c$ and $u=v=w$ c) Let $a,b,c,d$ be real numbers (not all zero), and let $f(x,y,z)$ be the polynomial in three variables defined by$$f(x,y,z) = axyz + b(xy + yz + zx) + c(x+y+z) + d$$.Prove that $f(x,y,z)$ is reducible if and only if $a,b,c,d$ is a geometric sequence.

2014 Harvard-MIT Mathematics Tournament, 8

Find all real numbers $k$ such that $r^4+kr^3+r^2+4kr+16=0$ is true for exactly one real number $r$.

2010 Putnam, B4

Find all pairs of polynomials $p(x)$ and $q(x)$ with real coefficients for which \[p(x)q(x+1)-p(x+1)q(x)=1.\]

2008 Iran Team Selection Test, 8

Find all polynomials $ p$ of one variable with integer coefficients such that if $ a$ and $ b$ are natural numbers such that $ a \plus{} b$ is a perfect square, then $ p\left(a\right) \plus{} p\left(b\right)$ is also a perfect square.

1974 USAMO, 1

Let $ a,b,$ and $ c$ denote three distinct integers, and let $ P$ denote a polynomial having integer coefficients. Show that it is impossible that $ P(a) \equal{} b, P(b) \equal{} c,$ and $ P(c) \equal{} a$.

2010 Belarus Team Selection Test, 3.3

A positive integer $N$ is called [i]balanced[/i], if $N=1$ or if $N$ can be written as a product of an even number of not necessarily distinct primes. Given positive integers $a$ and $b$, consider the polynomial $P$ defined by $P(x)=(x+a)(x+b)$. (a) Prove that there exist distinct positive integers $a$ and $b$ such that all the number $P(1)$, $P(2)$,$\ldots$, $P(50)$ are balanced. (b) Prove that if $P(n)$ is balanced for all positive integers $n$, then $a=b$. [i]Proposed by Jorge Tipe, Peru[/i]

1990 Baltic Way, 2

The squares of a squared paper are enumerated as shown on the picture. \[\begin{array}{|c|c|c|c|c|c} \ddots &&&&&\\ \hline 10&\ddots&&&&\\ \hline 6&9&\ddots&&&\\ \hline 3&5&8&12&\ddots&\\ \hline 1&2&4&7&11&\ddots\\ \hline \end{array}\] Devise a polynomial $p(m, n)$ in two variables such that for any $m, n \in \mathbb{N}$ the number written in the square with coordinates $(m, n)$ is equal to $p(m, n)$.

2015 Dutch IMO TST, 2

Determine all polynomials P(x) with real coefficients such that [(x + 1)P(x − 1) − (x − 1)P(x)] is a constant polynomial.

2007 Moldova Team Selection Test, 2

Consider $p$ a prime number and $p$ consecutive positive integers $m_{1}, m_{2}, \ldots, m_{p}$. Choose a permutation $\sigma$ of $1, 2, \ldots, p$. Show that there exist two different numbers $k,l \in \{1,2, \ldots, p\}$ such that $m_{k}m_{\sigma(k)}-m_{l}m_{\sigma(l)}$ is divisible by $p$.

2014 AMC 10, 23

A sphere is inscribed in a truncated right circular cone as shown. The volume of the truncated cone is twice that of the sphere. What is the ratio of the radius of the bottom base of the truncated cone to the radius of the top base of the truncated cone? [asy] real r=(3+sqrt(5))/2; real s=sqrt(r); real Brad=r; real brad=1; real Fht = 2*s; import graph3; import solids; currentprojection=orthographic(1,0,.2); currentlight=(10,10,5); revolution sph=sphere((0,0,Fht/2),Fht/2); //draw(surface(sph),green+white+opacity(0.5)); //triple f(pair t) {return (t.x*cos(t.y),t.x*sin(t.y),t.x^(1/n)*sin(t.y/n));} triple f(pair t) { triple v0 = Brad*(cos(t.x),sin(t.x),0); triple v1 = brad*(cos(t.x),sin(t.x),0)+(0,0,Fht); return (v0 + t.y*(v1-v0)); } triple g(pair t) { return (t.y*cos(t.x),t.y*sin(t.x),0); } surface sback=surface(f,(3pi/4,0),(7pi/4,1),80,2); surface sfront=surface(f,(7pi/4,0),(11pi/4,1),80,2); surface base = surface(g,(0,0),(2pi,Brad),80,2); draw(sback,rgb(0,1,0)); draw(sfront,rgb(.3,1,.3)); draw(base,rgb(.4,1,.4)); draw(surface(sph),rgb(.3,1,.3)); [/asy] $ \textbf {(A) } \dfrac {3}{2} \qquad \textbf {(B) } \dfrac {1+\sqrt{5}}{2} \qquad \textbf {(C) } \sqrt{3} \qquad \textbf {(D) } 2 \qquad \textbf {(E) } \dfrac {3+\sqrt{5}}{2} $

1970 AMC 12/AHSME, 11

If two factors of $2x^3-hx+k$ are $x+2$ and $x-1$, the value of $|2h-3k|$ is $\textbf{(A) }4\qquad\textbf{(B) }3\qquad\textbf{(C) }2\qquad\textbf{(D) }1\qquad \textbf{(E) }0$

2010 Contests, 4

With $\sigma (n)$ we denote the sum of natural divisors of the natural number $n$. Prove that, if $n$ is the product of different prime numbers of the form $2^k-1$ for $k \in \mathbb{N}$($Mersenne's$ prime numbers) , than $\sigma (n)=2^m$, for some $m \in \mathbb{N}$. Is the inverse statement true?

2013 Romania Team Selection Test, 4

Let $f$ and $g$ be two nonzero polynomials with integer coefficients and $\deg f>\deg g$. Suppose that for infinitely many primes $p$ the polynomial $pf+g$ has a rational root. Prove that $f$ has a rational root.

2015 CCA Math Bonanza, TB2

If $a,b,c$ are the roots of $x^3+20x^2+1x+5$, compute $(a^2+1)(b^2+1)(c^2+1)$. [i]2015 CCA Math Bonanza Tiebreaker Round #2[/i]

2008 Moldova Team Selection Test, 4

A non-zero polynomial $ S\in\mathbb{R}[X,Y]$ is called homogeneous of degree $ d$ if there is a positive integer $ d$ so that $ S(\lambda x,\lambda y)\equal{}\lambda^dS(x,y)$ for any $ \lambda\in\mathbb{R}$. Let $ P,Q\in\mathbb{R}[X,Y]$ so that $ Q$ is homogeneous and $ P$ divides $ Q$ (that is, $ P|Q$). Prove that $ P$ is homogeneous too.

1991 IMO Shortlist, 22

Real constants $ a, b, c$ are such that there is exactly one square all of whose vertices lie on the cubic curve $ y \equal{} x^3 \plus{} ax^2 \plus{} bx \plus{} c.$ Prove that the square has sides of length $ \sqrt[4]{72}.$

2020 LIMIT Category 1, 7

Let $P(x)=x^6-x^5-x^3-x^2-x$ and $a,b,c$ and $d$ be the roots of the equation $x^4-x^3-x^2-1=0$, then determine the value of $P(a)+P(b)+P(c)+P(d)$ (A)$5$ (B)$6$ (C)$7$ (D)$8$

1984 Swedish Mathematical Competition, 4

Find all positive integers $p$ and $q$ such that all the roots of the polynomial $(x^2 - px+q)(x^2 -qx+ p)$ are positive integers.

2007 AIME Problems, 11

For each positive integer $p$, let $b(p)$ denote the unique positive integer $k$ such that $|k-\sqrt{p}|<\frac{1}{2}$. For example, $b(6) = 2$ and $b(23)=5$. If $S = \textstyle\sum_{p=1}^{2007}b(p)$, find the remainder when S is divided by 1000.

PEN J Problems, 4

Let $m$, $n$ be positive integers. Prove that, for some positive integer $a$, each of $\phi(a)$, $\phi(a+1)$, $\cdots$, $\phi(a+n)$ is a multiple of $m$.

2017 CMIMC Algebra, 3

Suppose $P(x)$ is a quadratic polynomial with integer coefficients satisfying the identity \[P(P(x)) - P(x)^2 = x^2+x+2016\] for all real $x$. What is $P(1)$?

1976 Kurschak Competition, 3

Prove that if the quadratic $x^2 +ax+b$ is always positive (for all real $x$) then it can be written as the quotient of two polynomials whose coefficients are all positive.