This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 3597

2013 Brazil Team Selection Test, 4

Let $f$ and $g$ be two nonzero polynomials with integer coefficients and $\deg f>\deg g$. Suppose that for infinitely many primes $p$ the polynomial $pf+g$ has a rational root. Prove that $f$ has a rational root.

2014 AMC 12/AHSME, 16

Let $P$ be a cubic polynomial with $P(0) = k, P(1) = 2k,$ and $P(-1) = 3k$. What is $P(2) + P(-2)$? $ \textbf{(A) }0 \qquad\textbf{(B) }k \qquad\textbf{(C) }6k \qquad\textbf{(D) }7k\qquad\textbf{(E) }14k\qquad $

2005 Kyiv Mathematical Festival, 3

Two players by turn paint the circles on the given picture each with his colour. At the end, the rest of the area of each of small triangles is painted by the colour of the majority of vertices of this triangle. The winner is one who gets larger area of his colour (the area of circles is taken into account). Does any of them have winning strategy? If yes, then who wins? \[ \begin{picture}(60,60) \put(5,3){\put(3,0){\line(6,0){8}} \put(17,0){\line(6,0){8}} \put(31,0){\line(6,0){8}} \put(45,0){\line(6,0){8}} \put(10,14){\line(6,0){8}} \put(24,14){\line(6,0){8}} \put(38,14){\line(6,0){8}} \put(17,28){\line(6,0){8}} \put(31,28){\line(6,0){8}} \put(24,42){\line(6,0){8}} \put(1,2){\line(1,2){5}} \put(15,2){\line(1,2){5}} \put(29,2){\line(1,2){5}} \put(43,2){\line(1,2){5}} \put(8,16){\line(1,2){5}} \put(22,16){\line(1,2){5}} \put(36,16){\line(1,2){5}} \put(15,30){\line(1,2){5}} \put(29,30){\line(1,2){5}} \put(22,44){\line(1,2){5}} \put(13,2){\line( \minus{} 1,2){5}} \put(27,2){\line( \minus{} 1,2){5}} \put(41,2){\line( \minus{} 1,2){5}} \put(55,2){\line( \minus{} 1,2){5}} \put(20,16){\line( \minus{} 1,2){5}} \put(34,16){\line( \minus{} 1,2){5}} \put(48,16){\line( \minus{} 1,2){5}} \put(27,30){\line( \minus{} 1,2){5}} \put(41,30){\line( \minus{} 1,2){5}} \put(34,44){\line( \minus{} 1,2){5}} \put(0,0){\circle{6}} \put(14,0){\circle{6}} \put(28,0){\circle{6}} \put(42,0){\circle{6}} \put(56,0){\circle{6}} \put(7,14){\circle{6}} \put(21,14){\circle{6}} \put(35,14){\circle{6}} \put(49,14){\circle{6}} \put(14,28){\circle{6}} \put(28,28){\circle{6}} \put(42,28){\circle{6}} \put(21,42){\circle{6}} \put(35,42){\circle{6}} \put(28,56){\circle{6}}} \end{picture}\]

1984 AIME Problems, 15

Determine $w^2+x^2+y^2+z^2$ if \[ \begin{array}{l} \displaystyle \frac{x^2}{2^2-1}+\frac{y^2}{2^2-3^2}+\frac{z^2}{2^2-5^2}+\frac{w^2}{2^2-7^2}=1 \\ \displaystyle \frac{x^2}{4^2-1}+\frac{y^2}{4^2-3^2}+\frac{z^2}{4^2-5^2}+\frac{w^2}{4^2-7^2}=1 \\ \displaystyle \frac{x^2}{6^2-1}+\frac{y^2}{6^2-3^2}+\frac{z^2}{6^2-5^2}+\frac{w^2}{6^2-7^2}=1 \\ \displaystyle \frac{x^2}{8^2-1}+\frac{y^2}{8^2-3^2}+\frac{z^2}{8^2-5^2}+\frac{w^2}{8^2-7^2}=1 \\ \end{array} \]

1941 Putnam, A4

Tags: root , polynomial
Let the roots $a,b,c$ of $$f(x)=x^3 +p x^2 + qx+r$$ be real, and let $a\leq b\leq c$. Prove that $f'(x)$ has a root in the interval $\left[\frac{b+c}{2}, \frac{b+2c}{3}\right]$. What will be the form of $f(x)$ if the root in question falls at either end of the interval?

2010 ELMO Shortlist, 4

Let $r$ and $s$ be positive integers. Define $a_0 = 0$, $a_1 = 1$, and $a_n = ra_{n-1} + sa_{n-2}$ for $n \geq 2$. Let $f_n = a_1a_2\cdots a_n$. Prove that $\displaystyle\frac{f_n}{f_kf_{n-k}}$ is an integer for all integers $n$ and $k$ such that $0 < k < n$. [i]Evan O' Dorney.[/i]

2011 IMO Shortlist, 2

Consider a polynomial $P(x) = \prod^9_{j=1}(x+d_j),$ where $d_1, d_2, \ldots d_9$ are nine distinct integers. Prove that there exists an integer $N,$ such that for all integers $x \geq N$ the number $P(x)$ is divisible by a prime number greater than 20. [i]Proposed by Luxembourg[/i]

2001 All-Russian Olympiad, 2

The two polynomials $(x) =x^4+ax^3+bx^2+cx+d$ and $Q(x) = x^2+px+q$ take negative values on an interval $I$ of length greater than $2$, and nonnegative values outside of $I$. Prove that there exists $x_0 \in \mathbb R$ such that $P(x_0) < Q(x_0)$.

2022 JHMT HS, 2

The polynomial $P(x)=3x^3-2x^2+ax-b$ has roots $\sin^2\theta$, $\cos^2\theta$, and $\sin\theta\cos\theta$ for some angle $\theta$. Find $P(1)$.

2013 Indonesia MO, 5

Let $P$ be a quadratic (polynomial of degree two) with a positive leading coefficient and negative discriminant. Prove that there exists three quadratics $P_1, P_2, P_3$ such that: - $P(x) = P_1(x) + P_2(x) + P_3(x)$ - $P_1, P_2, P_3$ have positive leading coefficients and zero discriminants (and hence each has a double root) - The roots of $P_1, P_2, P_3$ are different

2025 Belarusian National Olympiad, 10.2

Let $n$ be a positive integer and $P(x)$ be a polynomial with integer coefficients such that $P(1)=1,P(2)=2,\ldots,P(n)=n$. Prove that $P(0)$ is divisible by $2 \cdot 3 \cdot \ldots \cdot n$. [i]A. Voidelevich[/i]

2019 Saudi Arabia Pre-TST + Training Tests, 3.1

Let $P(x)$ be a monic polynomial of degree $100$ with $100$ distinct noninteger real roots. Suppose that each of polynomials $P(2x^2 - 4x)$ and $P(4x - 2x^2)$ has exactly $130$ distinct real roots. Prove that there exist non constant polynomials $A(x),B(x)$ such that $A(x)B(x) = P(x)$ and $A(x) = B(x)$ has no root in $(-1.1)$

PEN S Problems, 6

Suppose that $x$ and $y$ are complex numbers such that \[\frac{x^{n}-y^{n}}{x-y}\] are integers for some four consecutive positive integers $n$. Prove that it is an integer for all positive integers $n$.

1991 AIME Problems, 1

Find $x^2+y^2$ if $x$ and $y$ are positive integers such that \[xy+x+y = 71\qquad\text{and}\qquad x^2y+xy^2 = 880.\]

2000 Swedish Mathematical Competition, 2

$p(x)$ is a polynomial such that $p(y^2+1) = 6y^4 - y^2 + 5$. Find $p(y^2-1)$.

1982 Poland - Second Round, 1

Prove that if $ c, d $ are integers with $ c \neq d $, $ d > 0 $ then the equation $$ x^3 - 3cx^2 - dx + c = 0$$ has no more than one rational root.

2014 IMAR Test, 3

Let $f$ be a primitive polynomial with integral coefficients (their highest common factor is $1$ ) such that $f$ is irreducible in $\mathbb{Q}[X]$ , and $f(X^2)$ is reducible in $\mathbb{Q}[X]$ . Show that $f= \pm(u^2-Xv^2)$ for some polynomials $u$ and $v$ with integral coefficients.

2007 District Olympiad, 4

Let $\mathcal K$ be a field with $2^{n}$ elements, $n \in \mathbb N^\ast$, and $f$ be the polynomial $X^{4}+X+1$. Prove that: (a) if $n$ is even, then $f$ is reducible in $\mathcal K[X]$; (b) if $n$ is odd, then $f$ is irreducible in $\mathcal K[X]$. [hide="Remark."]I saw the official solution and it wasn't that difficult, but I just couldn't solve this bloody problem.[/hide]

1979 AMC 12/AHSME, 25

If $q_1 ( x )$ and $r_ 1$ are the quotient and remainder, respectively, when the polynomial $x^ 8$ is divided by $x + \tfrac{1}{2}$ , and if $q_ 2 ( x )$ and $r_2$ are the quotient and remainder, respectively, when $q_ 1 ( x )$ is divided by $x + \tfrac{1}{2}$, then $r_2$ equals $\textbf{(A) }\frac{1}{256}\qquad\textbf{(B) }-\frac{1}{16}\qquad\textbf{(C) }1\qquad\textbf{(D) }-16\qquad\textbf{(E) }256$

1990 IMO Shortlist, 26

Let $ p(x)$ be a cubic polynomial with rational coefficients. $ q_1$, $ q_2$, $ q_3$, ... is a sequence of rationals such that $ q_n \equal{} p(q_{n \plus{} 1})$ for all positive $ n$. Show that for some $ k$, we have $ q_{n \plus{} k} \equal{} q_n$ for all positive $ n$.

1988 Austrian-Polish Competition, 1

Let $P(x)$ be a polynomial with integer coefficients. Show that if $Q(x) = P(x) +12$ has at least six distinct integer roots, then $P(x)$ has no integer roots.

Kvant 2020, M2592

Let $P(x)$ be a polynomial taking integer values at integer inputs. Are there infinitely many natural numbers that are not representable in the form $P(k)-2^n$ where $n{}$ and $k{}$ are non-negative integers? [i]Proposed by F. Petrov[/i]

2018 Bulgaria National Olympiad, 5.

Given a polynomial $P(x)=a_{d}x^{d}+ \ldots +a_{2}x^{2}+a_{0}$ with positive integers for coefficients and degree $d\geq 2$. Consider the sequence defined by $$b_{1}=a_{0} ,b_{n+1}=P(b_{n}) $$ for $n \geq 1$ . Prove that for all $n \geq 2$ there exists a prime $p$ such that $p$ divides $b_{n}$ but does not divide $b_{1}b_{2} \ldots b_{n-1}$.

2006 Iran Team Selection Test, 1

We have $n$ points in the plane, no three on a line. We call $k$ of them good if they form a convex polygon and there is no other point in the convex polygon. Suppose that for a fixed $k$ the number of $k$ good points is $c_k$. Show that the following sum is independent of the structure of points and only depends on $n$ : \[ \sum_{i=3}^n (-1)^i c_i \]

2010 Indonesia TST, 1

Is there a triangle with angles in ratio of $ 1: 2: 4$ and the length of its sides are integers with at least one of them is a prime number? [i]Nanang Susyanto, Jogjakarta[/i]