This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 3597

2020 Candian MO, 5#

If A,B are invertible and the set {A<sup>k</sup> - B<sup>k</sup> | k is a natural number} is finite , then there exists a natural number m such that A<sup>m</sup> = B<sup>m</sup>.

2012 Online Math Open Problems, 38

Let $S$ denote the sum of the 2011th powers of the roots of the polynomial $(x-2^0)(x-2^1) \cdots (x-2^{2010}) - 1$. How many ones are in the binary expansion of $S$? [i]Author: Alex Zhu[/i]

1997 Moldova Team Selection Test, 11

Let $P(X)$ be a polynomial with real coefficients such that $\{P(n)\}\leq\frac{1}{n}, \forall n\in\mathbb{N}$, where $\{a\}$ is the fractional part of the number $a$. Show that $P(n)\in\mathbb{Z}, \forall n\in\mathbb{N}$.

1989 Romania Team Selection Test, 2

Find all monic polynomials $P(x),Q(x)$ with integer coefficients such that $Q(0) =0$ and $P(Q(x)) = (x-1)(x-2)...(x-15)$.

2022 Israel TST, 2

Let $f: \mathbb{Z}^2\to \mathbb{R}$ be a function. It is known that for any integer $C$ the four functions of $x$ \[f(x,C), f(C,x), f(x,x+C), f(x, C-x)\] are polynomials of degree at most $100$. Prove that $f$ is equal to a polynomial in two variables and find its maximal possible degree. [i]Remark: The degree of a bivariate polynomial $P(x,y)$ is defined as the maximal value of $i+j$ over all monomials $x^iy^j$ appearing in $P$ with a non-zero coefficient.[/i]

1953 Putnam, A7

Assuming that the roots of $x^3 +px^2 +qx +r=0$ are all real and positive, find the relation between $p,q,r$ which is a necessary and sufficient condition that the roots are the cosines of the angles of a triangle.

1984 IMO Longlists, 6

Let $P,Q,R$ be the polynomials with real or complex coefficients such that at least one of them is not constant. If $P^n+Q^n+R^n = 0$, prove that $n < 3.$

2005 MOP Homework, 3

Determine all polynomials $P(x)$ with real coeffcients such that $(x^3+3x^2+3x+2)P(x-1)=(x^3-3x^2+3x-2)P(x)$.

2013 Online Math Open Problems, 48

$\omega$ is a complex number such that $\omega^{2013} = 1$ and $\omega^m \neq 1$ for $m=1,2,\ldots,2012$. Find the number of ordered pairs of integers $(a,b)$ with $1 \le a, b \le 2013$ such that \[ \frac{(1 + \omega + \cdots + \omega^a)(1 + \omega + \cdots + \omega^b)}{3} \] is the root of some polynomial with integer coefficients and leading coefficient $1$. (Such complex numbers are called [i]algebraic integers[/i].) [i]Victor Wang[/i]

1996 Poland - Second Round, 1

Can every polynomial with integer coefficients be expressed as a sum of cubes of polynomials with integer coefficients? [hide]I found the following statement that can be linked to this problem: "It is easy to see that every polynomial in F[x] is sum of cubes if char (F)$\ne$3 and card (F)=2,4"[/hide]

2009 Harvard-MIT Mathematics Tournament, 4

Suppose $a$, $b$ and $c$ are integers such that the greatest common divisor of $x^2+ax+b$ and $x^2+bx+c$ is $x+1$ (in the set of polynomials in $x$ with integer coefficients), and the least common multiple of $x^2+ax+b$ and $x^2+bx+c$ $x^3-4x^2+x+6$. Find $a+b+c$.

1993 Romania Team Selection Test, 2

For coprime integers $m > n > 1$ consider the polynomials $f(x) = x^{m+n} -x^{m+1} -x+1$ and $g(x) = x^{m+n} +x^{n+1} -x+1$. If $f$ and $g$ have a common divisor of degree greater than $1$, find this divisor.

1978 Miklós Schweitzer, 5

Suppose that $ R(z)= \sum_{n=-\infty}^{\infty} a_nz^n$ converges in a neighborhood of the unit circle $ \{ z : \;|z|=1\ \}$ in the complex plane, and $ R(z)=P(z) / Q(z)$ is a rational function in this neighborhood, where $ P$ and $ Q$ are polynomials of degree at most $ k$. Prove that there is a constant $ c$ independent of $ k$ such that \[ \sum_{n=-\infty} ^{\infty} |a_n| \leq ck^2 \max_{|z|=1} |R(z)|.\] [i]H. S. Shapiro, G. Somorjai[/i]

2003 Bulgaria National Olympiad, 3

Determine all polynomials $P(x)$ with integer coefficients such that, for any positive integer $n$, the equation $P(x)=2^n$ has an integer root.

2007 Moldova Team Selection Test, 2

If $b_{1}, b_{2}, \ldots, b_{n}$ are non-negative reals not all zero, then prove that the polynomial \[x^{n}-b_{1}x^{n-1}-b_{2}x^{n-2}-\ldots-b_{n}=0\] has only one positive root $p$, which is simple. Moreover prove that any root of the polynomial does not exceed $p$ in absolute value.

2016 Saudi Arabia BMO TST, 3

Find all integers $n$ such that there exists a polynomial $P(x)$ with integer coefficients satisfying $$P(\sqrt[3]{n^2} + \sqrt[3]{ n}) = 2016n + 20\sqrt[3]{n^2} + 16\sqrt[3]{n}$$

2014 Irish Math Olympiad, 8

(a) Let $a_0, a_1,a_2$ be real numbers and consider the polynomial $P(x) = a_0 + a_1x + a_2x^2$ . Assume that $P(-1), P(0)$ and $P(1)$ are integers. Prove that $P(n)$ is an integer for all integers $n$. (b) Let $a_0,a_1, a_2, a_3$ be real numbers and consider the polynomial $Q(x) = a0 + a_1x + a_2x^2 + a_3x^3 $. Assume that there exists an integer $i$ such that $Q(i),Q(i+1),Q(i+2)$ and $Q(i+3)$ are integers. Prove that $Q(n)$ is an integer for all integers $n$.

1998 IMO Shortlist, 1

Determine all pairs $(x,y)$ of positive integers such that $x^{2}y+x+y$ is divisible by $xy^{2}+y+7$.

2005 Greece Team Selection Test, 1

Tags: algebra , root , polynomial
The side lengths of a triangle are the roots of a cubic polynomial with rational coefficients. Prove that the altitudes of this triangle are roots of a polynomial of sixth degree with rational coefficients.

1997 Abels Math Contest (Norwegian MO), 4

Let $p(x)$ be a polynomial with integer coefficients. Suppose that there exist different integers $a$ and $b$ such that $f(a) = b$ and $f(b) = a$. Show that the equation $f(x) = x$ has at most one integer solution.

1999 India Regional Mathematical Olympiad, 7

Find the number of quadratic polynomials $ax^2 + bx +c$ which satisfy the following: (a) $a,b,c$ are distinct; (b) $a,b,c \in \{ 1,2,3,\cdots 1999 \}$; (c) $x+1$ divides $ax^2 + bx+c$.

2017 Hanoi Open Mathematics Competitions, 1

Tags: polynomial , algebra , sum
Suppose $x_1, x_2, x_3$ are the roots of polynomial $P(x) = x^3 - 4x^2 -3x + 2$. The sum $|x_1| + |x_2| + |x_3|$ is (A): $4$ (B): $6$ (C): $8$ (D): $10$ (E): None of the above.

2014 Iran MO (3rd Round), 3

Let $p,q\in \mathbb{R}[x]$ such that $p(z)q(\overline{z})$ is always a real number for every complex number $z$. Prove that $p(x)=kq(x)$ for some constant $k \in \mathbb{R}$ or $q(x)=0$. [i]Proposed by Mohammad Ahmadi[/i]

2016 CCA Math Bonanza, T8

As $a$, $b$ and $c$ range over [i]all[/i] real numbers, let $m$ be the smallest possible value of $$2\left(a+b+c\right)^2+\left(ab-4\right)^2+\left(bc-4\right)^2+\left(ca-4\right)^2$$ and $n$ be the number of ordered triplets $\left(a,b,c\right)$ such that the above quantity is minimized. Compute $m+n$. [i]2016 CCA Math Bonanza Team #8[/i]

2003 Switzerland Team Selection Test, 7

Find all polynomials $Q(x)= ax^2+bx+c$ with integer coefficients for which there exist three different prime numbers $p_1, p_2, p_3$ such that $|Q(p_1)| = |Q(p_2)| = |Q(p_3)| = 11$.