This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 3597

2021 Simon Marais Mathematical Competition, B4

[i]The following problem is open in the sense that the answer to part (b) is not currently known. A proof of part (a) will be awarded 5 points. Up to 7 additional points may be awarded for progress on part (b).[/i] Let $p(x)$ be a polynomial of degree $d$ with coefficients belonging to the set of rational numbers $\mathbb{Q}$. Suppose that, for each $1 \le k \le d-1$, $p(x)$ and its $k$th derivative $p^{(k)}(x)$ have a common root in $\mathbb{Q}$; that is, there exists $r_k \in \mathbb{Q}$ such that $p(r_k) = p^{(k)}(r_k) = 0$. (a) Prove that if $d$ is prime then there exist constants $a, b, c \in \mathbb{Q}$ such that \[ p(x) = c(ax + b)^d. \] (b) For which integers $d \ge 2$ does the conclusion of part (a) hold?

1998 Turkey Team Selection Test, 3

Let $f(x_{1}, x_{2}, . . . , x_{n})$ be a polynomial with integer coefficients of degree less than $n$. Prove that if $N$ is the number of $n$-tuples $(x_{1}, . . . , x_{n})$ with $0 \leq x_{i} < 13$ and $f(x_{1}, . . . , x_{n}) = 0 (mod 13)$, then $N$ is divisible by 13.

2010 BMO TST, 2

Let $ a\geq 2$ be a real number; with the roots $ x_{1}$ and $ x_{2}$ of the equation $ x^2\minus{}ax\plus{}1\equal{}0$ we build the sequence with $ S_{n}\equal{}x_{1}^n \plus{} x_{2}^n$. [b]a)[/b]Prove that the sequence $ \frac{S_{n}}{S_{n\plus{}1}}$, where $ n$ takes value from $ 1$ up to infinity, is strictly non increasing. [b]b)[/b]Find all value of $ a$ for the which this inequality hold for all natural values of $ n$ $ \frac{S_{1}}{S_{2}}\plus{}\cdots \plus{}\frac{S_{n}}{S_{n\plus{}1}}>n\minus{}1$

2013 South africa National Olympiad, 4

Determine all pairs of polynomials $f$ and $g$ with real coefficients such that \[ x^2 \cdot g(x) = f(g(x)). \]

2005 AMC 10, 24

For each positive integer $ m > 1$, let $ P(m)$ denote the greatest prime factor of $ m$. For how many positive integers $ n$ is it true that both $ P(n) \equal{} \sqrt{n}$ and $ P(n \plus{} 48) \equal{} \sqrt{n \plus{} 48}$? $ \textbf{(A)}\ 0\qquad \textbf{(B)}\ 1\qquad \textbf{(C)}\ 3\qquad \textbf{(D)}\ 4\qquad \textbf{(E)}\ 5$

2021-IMOC qualification, A2

Find all functions $f:R \to R$, such that $f(x)+f(y)=f(x+y)$, and there exists non-constant polynomials $P(x)$, $Q(x)$ such that $P(x)f(Q(x))=f(P(x)Q(x))$

1998 German National Olympiad, 4

Let $a$ be a positive real number. Then prove that the polynomial \[ p(x)=a^3x^3+a^2x^2+ax+a \] has integer roots if and only if $a=1$ and determine those roots.

KoMaL A Problems 2017/2018, A. 718

Let $\mathbb{R}[x,y]$ denote the set of two-variable polynomials with real coefficients. We say that the pair $(a,b)$ is a [i]zero[/i] of the polynomial $f \in \mathbb{R}[x,y]$ if $f(a,b)=0$. If polynomials $p,q \in \mathbb{R}[x,y]$ have infinitely many common zeros, does it follow that there exists a non-constant polynomial $r \in \mathbb{R}[x,y]$ which is a factor of both $p$ and $q$?

2013 Iran MO (3rd Round), 2

Suppose that $a,b$ are two odd positive integers such that $2ab+1 \mid a^2 + b^2 + 1$. Prove that $a=b$. (15 points)

1969 German National Olympiad, 6

Let $n$ be a positive integer, $h$ a real number and $f(x)$ a polynomial (whole rational function) with real coefficients of degree n, which has no real zeros. Prove that then also the polynomial $$F(x) = f(x) + h f'(x) + h^2 f''(x) +... + h^n f^{(n)}(x)$$ has no real zeros.

2011 All-Russian Olympiad Regional Round, 11.1

Is there a real number $\alpha$ such that $\cos\alpha$ is irrational but $\cos 2\alpha$, $\cos 3\alpha$, $\cos 4\alpha$, $\cos 5\alpha$ are all rational? (Author: V. Senderov)

2013 Romania National Olympiad, 1

Given A, non-inverted matrices of order n with real elements, $n\ge 2$ and given ${{A}^{*}}$adjoin matrix A. Prove that $tr({{A}^{*}})\ne -1$ if and only if the matrix ${{I}_{n}}+{{A}^{*}}$ is invertible.

PEN K Problems, 4

Find all functions $f: \mathbb{N}\to \mathbb{N}$ such that for all $n\in \mathbb{N}$: \[f(f(f(n)))+f(f(n))+f(n)=3n.\]

2005 IMO Shortlist, 7

Let $P(x)=a_{n}x^{n}+a_{n-1}x^{n-1}+\ldots+a_{0}$, where $a_{0},\ldots,a_{n}$ are integers, $a_{n}>0$, $n\geq 2$. Prove that there exists a positive integer $m$ such that $P(m!)$ is a composite number.

2002 Hungary-Israel Binational, 3

Let $p(x)$ be a polynomial with rational coefficients, of degree at least $2$. Suppose that a sequence $(r_{n})$ of rational numbers satisfies $r_{n}= p(r_{n+1})$ for every $n\geq 1$. Prove that the sequence $(r_{n})$ is periodic.

1981 All Soviet Union Mathematical Olympiad, 325

a) Find the minimal value of the polynomial $$P(x,y) = 4 + x^2y^4 + x^4y^2 - 3x^2y^2$$ b) Prove that it cannot be represented as a sum of the squares of some polynomials of $x,y$.

2008 China Team Selection Test, 2

Prove that for all $ n\geq 2,$ there exists $ n$-degree polynomial $ f(x) \equal{} x^n \plus{} a_{1}x^{n \minus{} 1} \plus{} \cdots \plus{} a_{n}$ such that (1) $ a_{1},a_{2},\cdots, a_{n}$ all are unequal to $ 0$; (2) $ f(x)$ can't be factorized into the product of two polynomials having integer coefficients and positive degrees; (3) for any integers $ x, |f(x)|$ isn't prime numbers.

2007 Harvard-MIT Mathematics Tournament, 8

Suppose that $\omega$ is a primitive $2007^{\text{th}}$ root of unity. Find $\left(2^{2007}-1\right)\displaystyle\sum_{j=1}^{2006}\dfrac{1}{2-\omega^j}$.

2012 Middle European Mathematical Olympiad, 2

Let $ a,b$ and $ c $ be positive real numbers with $ abc = 1 $. Prove that \[ \sqrt{ 9 + 16a^2}+\sqrt{ 9 + 16b^2}+\sqrt{ 9 + 16c^2} \ge 3 +4(a+b+c)\]

2021 Iran MO (3rd Round), 3

Polynomial $P$ with non-negative real coefficients and function $f:\mathbb{R}^+\to \mathbb{R}^+$ are given such that for all $x, y\in \mathbb{R}^+$ we have $$f(x+P(x)f(y)) = (y+1)f(x)$$ (a) Prove that $P$ has degree at most 1. (b) Find all function $f$ and non-constant polynomials $P$ satisfying the equality.

1957 Putnam, A4

Let $P(z)$ be a polynomial with real coefficients whose roots are covered by a disk of radius R. Prove that for any real number $k$, the roots of the polynomial $nP(z)-kP'(z)$ can be covered by a disk of radius $R+|k|$, where $n$ is the degree of $P(z)$, and $P'(z)$ is the derivative of $P(z)$. can anyone help me? It would also be extremely helpful if anyone could tell me where they've seen this type of problems.............Has it appeared in any mathematics competitions? Or are there any similar questions for me to attempt? Thanks in advance!

2013 Balkan MO Shortlist, A4

Find all positive integers $n$ such that there exist non-constant polynomials with integer coefficients $f_1(x),...,f_n(x)$ (not necessarily distinct) and $g(x)$ such that $$1 + \prod_{k=1}^{n}\left(f^2_k(x)-1\right)=(x^2+2013)^2g^2(x)$$

PEN G Problems, 9

Show that $\cos \frac{\pi}{7}$ is irrational.

2002 National Olympiad First Round, 4

How many real roots does the polynomial $x^5 + x^4 - x^3 - x^2 - 2x - 2$ have? $ \textbf{a)}\ 1 \qquad\textbf{b)}\ 2 \qquad\textbf{c)}\ 3 \qquad\textbf{d)}\ 4 \qquad\textbf{e)}\ \text{None of above} $

2018 Hanoi Open Mathematics Competitions, 2

Let $f(x)$ be a polynomial such that $2f(x) + f(2 - x) = 5 + x$ for any real number x. Find the value of $f(0) + f(2)$. A. $4$ B. $0$ C.$ 2$ D. $3$ E. $1$