This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 343

Cono Sur Shortlist - geometry, 2012.G2

Let $ABC$ be a triangle, and $M$ and $N$ variable points on $AB$ and $AC$ respectively, such that both $M$ and $N$ do not lie on the vertices, and also, $AM \times MB = AN \times NC$. Prove that the perpendicular bisector of $MN$ passes through a fixed point.

2012 ELMO Shortlist, 1

In acute triangle $ABC$, let $D,E,F$ denote the feet of the altitudes from $A,B,C$, respectively, and let $\omega$ be the circumcircle of $\triangle AEF$. Let $\omega_1$ and $\omega_2$ be the circles through $D$ tangent to $\omega$ at $E$ and $F$, respectively. Show that $\omega_1$ and $\omega_2$ meet at a point $P$ on $BC$ other than $D$. [i]Ray Li.[/i]

1992 India National Olympiad, 5

Two circles $C_1$ and $C_2$ intersect at two distinct points $P, Q$ in a plane. Let a line passing through $P$ meet the circles $C_1$ and $C_2$ in $A$ and $B$ respectively. Let $Y$ be the midpoint of $AB$ and let $QY$ meet the cirlces $C_1$ and $C_2$ in $X$ and $Z$ respectively. Show that $Y$ is also the midpoint of $XZ$.

2010 Contests, 1

A circle that passes through the vertex $A$ of a rectangle $ABCD$ intersects the side $AB$ at a second point $E$ different from $B.$ A line passing through $B$ is tangent to this circle at a point $T,$ and the circle with center $B$ and passing through $T$ intersects the side $BC$ at the point $F.$ Show that if $\angle CDF= \angle BFE,$ then $\angle EDF=\angle CDF.$

2006 All-Russian Olympiad, 4

Given a triangle $ ABC$. The angle bisectors of the angles $ ABC$ and $ BCA$ intersect the sides $ CA$ and $ AB$ at the points $ B_1$ and $ C_1$, and intersect each other at the point $ I$. The line $ B_1C_1$ intersects the circumcircle of triangle $ ABC$ at the points $ M$ and $ N$. Prove that the circumradius of triangle $ MIN$ is twice as long as the circumradius of triangle $ ABC$.

2009 Indonesia TST, 3

Let $ ABC$ be an acute triangle with $ \angle BAC\equal{}60^{\circ}$. Let $ P$ be a point in triangle $ ABC$ with $ \angle APB\equal{}\angle BPC\equal{}\angle CPA\equal{}120^{\circ}$. The foots of perpendicular from $ P$ to $ BC,CA,AB$ are $ X,Y,Z$, respectively. Let $ M$ be the midpoint of $ YZ$. a) Prove that $ \angle YXZ\equal{}60^{\circ}$ b) Prove that $ X,P,M$ are collinear.

2013 Harvard-MIT Mathematics Tournament, 8

Let points $A$ and $B$ be on circle $\omega$ centered at $O$. Suppose that $\omega_A$ and $\omega_B$ are circles not containing $O$ which are internally tangent to $\omega$ at $A$ and $B$, respectively. Let $\omega_A$ and $\omega_B$ intersect at $C$ and $D$ such that $D$ is inside triangle $ABC$. Suppose that line $BC$ meets $\omega$ again at $E$ and let line $EA$ intersect $\omega_A$ at $F$. If $ FC \perp CD $, prove that $O$, $C$, and $D$ are collinear.

2018 Azerbaijan IMO TST, 2

In triangle $ABC$, let $\omega$ be the excircle opposite to $A$. Let $D, E$ and $F$ be the points where $\omega$ is tangent to $BC, CA$, and $AB$, respectively. The circle $AEF$ intersects line $BC$ at $P$ and $Q$. Let $M$ be the midpoint of $AD$. Prove that the circle $MPQ$ is tangent to $\omega$.

Cono Sur Shortlist - geometry, 2012.G3

Let $ABC$ be a triangle, and $M$, $N$, and $P$ be the midpoints of $AB$, $BC$, and $CA$ respectively, such that $MBNP$ is a parallelogram. Let $R$ and $S$ be the points in which the line $MN$ intersects the circumcircle of $ABC$. Prove that $AC$ is tangent to the circumcircle of triangle $RPS$.

2018 India IMO Training Camp, 2

In triangle $ABC$, let $\omega$ be the excircle opposite to $A$. Let $D, E$ and $F$ be the points where $\omega$ is tangent to $BC, CA$, and $AB$, respectively. The circle $AEF$ intersects line $BC$ at $P$ and $Q$. Let $M$ be the midpoint of $AD$. Prove that the circle $MPQ$ is tangent to $\omega$.

2006 Romania Team Selection Test, 2

Let $A$ be point in the exterior of the circle $\mathcal C$. Two lines passing through $A$ intersect the circle $\mathcal C$ in points $B$ and $C$ (with $B$ between $A$ and $C$) respectively in $D$ and $E$ (with $D$ between $A$ and $E$). The parallel from $D$ to $BC$ intersects the second time the circle $\mathcal C$ in $F$. Let $G$ be the second point of intersection between the circle $\mathcal C$ and the line $AF$ and $M$ the point in which the lines $AB$ and $EG$ intersect. Prove that \[ \frac 1{AM} = \frac 1{AB} + \frac 1{AC}. \]

Swiss NMO - geometry, 2010.9

Let $ k$ and $ k'$ two concentric circles centered at $ O$, with $ k'$ being larger than $ k$. A line through $ O$ intersects $ k$ at $ A$ and $ k'$ at $ B$ such that $ O$ seperates $ A$ and $ B$. Another line through $ O$ intersects $ k$ at $ E$ and $ k'$ at $ F$ such that $ E$ separates $ O$ and $ F$. Show that the circumcircle of $ \triangle{OAE}$ and the circles with diametres $ AB$ and $ EF$ have a common point.

2001 Junior Balkan MO, 2

Let $ABC$ be a triangle with $\angle C = 90^\circ$ and $CA \neq CB$. Let $CH$ be an altitude and $CL$ be an interior angle bisector. Show that for $X \neq C$ on the line $CL$, we have $\angle XAC \neq \angle XBC$. Also show that for $Y \neq C$ on the line $CH$ we have $\angle YAC \neq \angle YBC$. [i]Bulgaria[/i]

2025 Bangladesh Mathematical Olympiad, P6

Suppose $X$ and $Y$ are the common points of two circles $\omega_1$ and $\omega_2$. The third circle $\omega$ is internally tangent to $\omega_1$ and $\omega_2$ in $P$ and $Q$, respectively. Segment $XY$ intersects $\omega$ in points $M$ and $N$. Rays $PM$ and $PN$ intersect $\omega_1$ in points $A$ and $D$; rays $QM$ and $QN$ intersect $\omega_2$ in points $B$ and $C$, respectively. Prove that $AB = CD$.

2011 Polish MO Finals, 2

The incircle of triangle $ABC$ is tangent to $BC,CA,AB$ at $D,E,F$ respectively. Consider the triangle formed by the line joining the midpoints of $AE,AF$, the line joining the midpoints of $BF,BD$, and the line joining the midpoints of $CD,CE$. Prove that the circumcenter of this triangle coincides with the circumcenter of triangle $ABC$.

2003 IberoAmerican, 2

In a square $ABCD$, let $P$ and $Q$ be points on the sides $BC$ and $CD$ respectively, different from its endpoints, such that $BP=CQ$. Consider points $X$ and $Y$ such that $X\neq Y$, in the segments $AP$ and $AQ$ respectively. Show that, for every $X$ and $Y$ chosen, there exists a triangle whose sides have lengths $BX$, $XY$ and $DY$.

2013 China Western Mathematical Olympiad, 3

Let $ABC$ be a triangle, and $B_1,C_1$ be its excenters opposite $B,C$. $B_2,C_2$ are reflections of $B_1,C_1$ across midpoints of $AC,AB$. Let $D$ be the extouch at $BC$. Show that $AD$ is perpendicular to $B_2C_2$

1993 IMO Shortlist, 2

A circle $S$ bisects a circle $S'$ if it cuts $S'$ at opposite ends of a diameter. $S_A$, $S_B$,$S_C$ are circles with distinct centers $A, B, C$ (respectively). Show that $A, B, C$ are collinear iff there is no unique circle $S$ which bisects each of $S_A$, $S_B$,$S_C$ . Show that if there is more than one circle $S$ which bisects each of $S_A$, $S_B$,$S_C$ , then all such circles pass through two fixed points. Find these points. [b]Original Statement:[/b] A circle $S$ is said to cut a circle $\Sigma$ [b]diametrically[/b] if and only if their common chord is a diameter of $\Sigma.$ Let $S_A, S_B, S_C$ be three circles with distinct centres $A,B,C$ respectively. Prove that $A,B,C$ are collinear if and only if there is no unique circle $S$ which cuts each of $S_A, S_B, S_C$ diametrically. Prove further that if there exists more than one circle $S$ which cuts each $S_A, S_B, S_C$ diametrically, then all such circles $S$ pass through two fixed points. Locate these points in relation to the circles $S_A, S_B, S_C.$

2005 Harvard-MIT Mathematics Tournament, 10

Let $AB$ be a diameter of a semicircle $\Gamma$. Two circles, $\omega_1$ and $\omega_2$, externally tangent to each other and internally tangent to $\Gamma$, are tangent to the line $AB$ at $P$ and $Q$, respectively, and to semicircular arc $AB$ at $C$ and $D$, respectively, with $AP<AQ$. Suppose $F$ lies on $\Gamma$ such that $ \angle FQB = \angle CQA $ and that $ \angle ABF = 80^\circ $. Find $ \angle PDQ $ in degrees.

2005 MOP Homework, 3

Circles $S_1$ and $S_2$ meet at points $A$ and $B$. A line through $A$ is parallel to the line through the centers of $S_1$ and $S_2$ and meets $S_1$ and $S_2$ again $C$ and $D$ respectively. Circle $S_3$ having $CD$ as its diameter meets $S_1$ and $S_2$ again at $P$ and $Q$ respectively. Prove that lines $CP$, $DQ$, and $AB$ are concurent.

2014 Moldova Team Selection Test, 3

Let $\triangle ABC$ be an acute triangle and $AD$ the bisector of the angle $\angle BAC$ with $D\in(BC)$. Let $E$ and $F$ denote feet of perpendiculars from $D$ to $AB$ and $AC$ respectively. If $BF\cap CE=K$ and $\odot AKE\cap BF=L$ prove that $DL\perp BF$.

2015 IFYM, Sozopol, 8

The quadrilateral $ABCD$ is circumscribed around a circle $k$ with center $I$ and $DA\cap CB=E$, $AB\cap DC=F$. In $\Delta EAF$ and $\Delta ECF$ are inscribed circles $k_1 (I_1,r_1)$ and $k_2 (I_2,r_2)$ respectively. Prove that the middle point $M$ of $AC$ lies on the radical axis of $k_1$ and $k_2$.

1959 AMC 12/AHSME, 32

The length $l$ of a tangent, drawn from a point $A$ to a circle, is $\frac43$ of the radius $r$. The (shortest) distance from $A$ to the circle is: $ \textbf{(A)}\ \frac{1}{2}r \qquad\textbf{(B)}\ r\qquad\textbf{(C)}\ \frac{1}{2}l\qquad\textbf{(D)}\ \frac23l \qquad\textbf{(E)}\ \text{a value between r and l.} $

2012 ELMO Problems, 1

In acute triangle $ABC$, let $D,E,F$ denote the feet of the altitudes from $A,B,C$, respectively, and let $\omega$ be the circumcircle of $\triangle AEF$. Let $\omega_1$ and $\omega_2$ be the circles through $D$ tangent to $\omega$ at $E$ and $F$, respectively. Show that $\omega_1$ and $\omega_2$ meet at a point $P$ on $BC$ other than $D$. [i]Ray Li.[/i]

2005 Tuymaada Olympiad, 7

Let $I$ be the incentre of triangle $ABC$. A circle containing the points $B$ and $C$ meets the segments $BI$ and $CI$ at points $P$ and $Q$ respectively. It is known that $BP\cdot CQ=PI\cdot QI$. Prove that the circumcircle of the triangle $PQI$ is tangent to the circumcircle of $ABC$. [i]Proposed by S. Berlov[/i]