Found problems: 343
2014 Singapore Senior Math Olympiad, 35
Two circles intersect at the points $C$ and $D$. The straight lines $CD$ and $BYXA$ intersect at the point $Z$. Moreever, the straight line $WB$ is tangent to both of the circles. Suppose $ZX=ZY$ and $AB\cdot AX=100$. Find the value of $BW$.
2008 China Team Selection Test, 1
Let $ P$ be the the isogonal conjugate of $ Q$ with respect to triangle $ ABC$, and $ P,Q$ are in the interior of triangle $ ABC$. Denote by $ O_{1},O_{2},O_{3}$ the circumcenters of triangle $ PBC,PCA,PAB$, $ O'_{1},O'_{2},O'_{3}$ the circumcenters of triangle $ QBC,QCA,QAB$, $ O$ the circumcenter of triangle $ O_{1}O_{2}O_{3}$, $ O'$ the circumcenter of triangle $ O'_{1}O'_{2}O'_{3}$. Prove that $ OO'$ is parallel to $ PQ$.
2010 Brazil Team Selection Test, 3
Given a cyclic quadrilateral $ABCD$, let the diagonals $AC$ and $BD$ meet at $E$ and the lines $AD$ and $BC$ meet at $F$. The midpoints of $AB$ and $CD$ are $G$ and $H$, respectively. Show that $EF$ is tangent at $E$ to the circle through the points $E$, $G$ and $H$.
[i]Proposed by David Monk, United Kingdom[/i]
1990 IberoAmerican, 4
Let $\Gamma_{1}$ be a circle. $AB$ is a diameter, $\ell$ is the tangent at $B$, and $M$ is a point on $\Gamma_{1}$ other than $A$. $\Gamma_{2}$ is a circle tangent to $\ell$, and also to $\Gamma_{1}$ at $M$.
a) Determine the point of tangency $P$ of $\ell$ and $\Gamma_{2}$ and find the locus of the center of $\Gamma_{2}$ as $M$ varies.
b) Show that there exists a circle that is always orthogonal to $\Gamma_{2}$, regardless of the position of $M$.
2008 China Team Selection Test, 1
Let $ P$ be the the isogonal conjugate of $ Q$ with respect to triangle $ ABC$, and $ P,Q$ are in the interior of triangle $ ABC$. Denote by $ O_{1},O_{2},O_{3}$ the circumcenters of triangle $ PBC,PCA,PAB$, $ O'_{1},O'_{2},O'_{3}$ the circumcenters of triangle $ QBC,QCA,QAB$, $ O$ the circumcenter of triangle $ O_{1}O_{2}O_{3}$, $ O'$ the circumcenter of triangle $ O'_{1}O'_{2}O'_{3}$. Prove that $ OO'$ is parallel to $ PQ$.
2004 IMO Shortlist, 8
Given a cyclic quadrilateral $ABCD$, let $M$ be the midpoint of the side $CD$, and let $N$ be a point on the circumcircle of triangle $ABM$. Assume that the point $N$ is different from the point $M$ and satisfies $\frac{AN}{BN}=\frac{AM}{BM}$. Prove that the points $E$, $F$, $N$ are collinear, where $E=AC\cap BD$ and $F=BC\cap DA$.
[i]Proposed by Dusan Dukic, Serbia and Montenegro[/i]
2014 Postal Coaching, 2
Let $ABCD$ be a circumscribed quadrilateral. Its incircle $\omega$ touches the sides $BC$ and $DA$ at points $E$ and $F$ respectively. It is known that lines $AB,FE$ and $CD$ concur. The circumcircles of triangles $AED$ and $BFC$ meet $\omega$ for the second time at points $E_1$ and $F_1$. Prove that $EF$ is parallel to $E_1 F_1$.
1992 India Regional Mathematical Olympiad, 4
$ABCD$ is a cyclic quadrilateral with $AC \perp BD$; $AC$ meets $BD$ at $E$. Prove that \[ EA^2 + EB^2 + EC^2 + ED^2 = 4 R^2 \]
where $R$ is the radius of the circumscribing circle.
2005 All-Russian Olympiad Regional Round, 11.4
11.4 Let $AA_1$ and $BB_1$ are altitudes of an acute non-isosceles triangle $ABC$, $A'$ is a midpoint of $BC$ and $B'$ is a midpoint of $AC$. A segement $A_1B_1$ intersects $A'B'$ at point $C'$. Prove that $CC'\perp HO$, where $H$ is a orthocenter and $O$ is a circumcenter of $ABC$.
([i]L. Emel'yanov[/i])
2025 Bangladesh Mathematical Olympiad, P3
Let $ABC$ be a given triangle with circumcenter $O$ and orthocenter $H$. Let $D, E$ and $F$ be the feet of the perpendiculars from $A, B$ and $C$ to the opposite sides, respectively. Let $A'$ be the reflection of $A$ with respect to $EF$. Prove that $HOA'D$ is a cyclic quadrilateral.
[i]Proposed by Imad Uddin Ahmad Hasin[/i]
KoMaL A Problems 2018/2019, A. 736
Let $P$ be a point in the plane of triangle $ABC$. Denote the reflections of $A,B,C$ over $P$ by $A',B'$ and $C'$, respectively. Let $A'',B'',C''$ be the reflection of $A',B',C'$ over $BC,CA$ and $AB$, respectively. Let the line $A''B''$ intersects $AC$ at $A_b$ and let $A''C''$ intersects $AB$ at $A_c$. Denote by $\omega_A$ the circle through the points $A,A_b,A_c$. The circles $\omega_B,\omega_C$ are defined similarly. Prove that $\omega_A ,\omega_B ,\omega_C$ are coaxial, i.e., they share a common radical axis.
[i]Proposed by Navneel Singhal, Delhi and K. V. Sudharshan, Chennai, India[/i]
1998 USAMO, 2
Let ${\cal C}_1$ and ${\cal C}_2$ be concentric circles, with ${\cal C}_2$ in the interior of ${\cal C}_1$. From a point $A$ on ${\cal C}_1$ one draws the tangent $AB$ to ${\cal C}_2$ ($B\in {\cal C}_2$). Let $C$ be the second point of intersection of $AB$ and ${\cal C}_1$, and let $D$ be the midpoint of $AB$. A line passing through $A$ intersects ${\cal C}_2$ at $E$ and $F$ in such a way that the perpendicular bisectors of $DE$ and $CF$ intersect at a point $M$ on $AB$. Find, with proof, the ratio $AM/MC$.
2005 Italy TST, 2
The circle $\Gamma$ and the line $\ell$ have no common points. Let $AB$ be the diameter of $\Gamma$ perpendicular to $\ell$, with $B$ closer to $\ell$ than $A$. An arbitrary point $C\not= A$, $B$ is chosen on $\Gamma$. The line $AC$ intersects $\ell$ at $D$. The line $DE$ is tangent to $\Gamma$ at $E$, with $B$ and $E$ on the same side of $AC$. Let $BE$ intersect $\ell$ at $F$, and let $AF$ intersect $\Gamma$ at $G\not= A$. Let $H$ be the reflection of $G$ in $AB$. Show that $F,C$, and $H$ are collinear.
2011 Switzerland - Final Round, 8
Let $ABCD$ be a parallelogram and $H$ the Orthocentre of $\triangle{ABC}$. The line parallel to $AB$ through $H$ intersects $BC$ at $P$ and $AD$ at $Q$ while the line parallel to $BC$ through $H$ intersects $AB$ at $R$ and $CD$ at $S$. Show that $P$, $Q$, $R$ and $S$ are concyclic.
[i](Swiss Mathematical Olympiad 2011, Final round, problem 8)[/i]
2012 Brazil Team Selection Test, 4
Let $ABCD$ be a convex quadrilateral whose sides $AD$ and $BC$ are not parallel. Suppose that the circles with diameters $AB$ and $CD$ meet at points $E$ and $F$ inside the quadrilateral. Let $\omega_E$ be the circle through the feet of the perpendiculars from $E$ to the lines $AB,BC$ and $CD$. Let $\omega_F$ be the circle through the feet of the perpendiculars from $F$ to the lines $CD,DA$ and $AB$. Prove that the midpoint of the segment $EF$ lies on the line through the two intersections of $\omega_E$ and $\omega_F$.
[i]Proposed by Carlos Yuzo Shine, Brazil[/i]
2002 Iran MO (3rd Round), 5
$\omega$ is circumcirlce of triangle $ABC$. We draw a line parallel to $BC$ that intersects $AB,AC$ at $E,F$ and intersects $\omega$ at $U,V$. Assume that $M$ is midpoint of $BC$. Let $\omega'$ be circumcircle of $UMV$. We know that $R(ABC)=R(UMV)$. $ME$ and $\omega'$ intersect at $T$, and $FT$ intersects $\omega'$ at $S$. Prove that $EF$ is tangent to circumcircle of $MCS$.
2008 Bulgaria Team Selection Test, 2
In the triangle $ABC$, $AM$ is median, $M \in BC$, $BB_{1}$ and $CC_{1}$ are altitudes, $C_{1} \in AB$, $B_{1} \in AC$. The line through $A$ which is perpendicular to $AM$ cuts the lines $BB_{1}$ and $CC_{1}$ at points $E$ and $F$, respectively. Let $k$ be the circumcircle of $\triangle EFM$. Suppose also that $k_{1}$ and $k_{2}$ are circles touching both $EF$ and the arc $EF$ of $k$ which does not contain $M$. If $P$ and $Q$ are the points at which $k_{1}$ intersects $k_{2}$, prove that $P$, $Q$, and $M$ are collinear.
2003 National Olympiad First Round, 1
Let $ABC$ be a triangle such that $|AB|=7$, $|BC|=8$, $|AC|=6$. Let $D$ be the midpoint of side $[BC]$. If the circle through $A$, $B$ and $D$ cuts $AC$ at $A$ and $E$, what is $|AE|$?
$
\textbf{(A)}\ \dfrac 23
\qquad\textbf{(B)}\ 1
\qquad\textbf{(C)}\ \dfrac 32
\qquad\textbf{(D)}\ 2
\qquad\textbf{(E)}\ 3
$
2008 Sharygin Geometry Olympiad, 7
(F.Nilov) Two arcs with equal angular measure are constructed on the medians $ AA'$ and $ BB'$ of triangle $ ABC$ towards vertex $ C$. Prove that the common chord of the respective circles passes through $ C$.
2011 Mexico National Olympiad, 2
Let $ABC$ be an acute triangle and $\Gamma$ its circumcircle. Let $l$ be the line tangent to $\Gamma$ at $A$. Let $D$ and $E$ be the intersections of the circumference with center $B$ and radius $AB$ with lines $l$ and $AC$, respectively. Prove the orthocenter of $ABC$ lies on line $DE$.
2024 ELMO Shortlist, G1
In convex quadrilateral $ABCD$, let diagonals $\overline{AC}$ and $\overline{BD}$ intersect at $E$. Let the circumcircles of $ADE$ and $BCE$ intersect $\overline{AB}$ again at $P \neq A$ and $Q \neq B$, respectively. Let the circumcircle of $ACP$ intersect $\overline{AD}$ again at $R \neq A$, and let the circumcircle of $BDQ$ intersect $\overline{BC}$ again at $S \neq B$. Prove that $A$, $B$, $R$, and $S$ are concyclic.
[i]Tiger Zhang[/i]
2014 Contests, 3
Let $\triangle ABC$ be an acute triangle and $AD$ the bisector of the angle $\angle BAC$ with $D\in(BC)$. Let $E$ and $F$ denote feet of perpendiculars from $D$ to $AB$ and $AC$ respectively. If $BF\cap CE=K$ and $\odot AKE\cap BF=L$ prove that $DL\perp BF$.
2010 Germany Team Selection Test, 2
Given a cyclic quadrilateral $ABCD$, let the diagonals $AC$ and $BD$ meet at $E$ and the lines $AD$ and $BC$ meet at $F$. The midpoints of $AB$ and $CD$ are $G$ and $H$, respectively. Show that $EF$ is tangent at $E$ to the circle through the points $E$, $G$ and $H$.
[i]Proposed by David Monk, United Kingdom[/i]
2010 Turkey Junior National Olympiad, 1
A circle that passes through the vertex $A$ of a rectangle $ABCD$ intersects the side $AB$ at a second point $E$ different from $B.$ A line passing through $B$ is tangent to this circle at a point $T,$ and the circle with center $B$ and passing through $T$ intersects the side $BC$ at the point $F.$ Show that if $\angle CDF= \angle BFE,$ then $\angle EDF=\angle CDF.$
1993 India National Olympiad, 1
The diagonals $AC$ and $BD$ of a cyclic quadrilateral $ABCD$ intersect at $P$. Let $O$ be the circumcenter of triangle $APB$ and $H$ be the orthocenter of triangle $CPD$. Show that the points $H,P,O$ are collinear.