Found problems: 343
2012 India IMO Training Camp, 1
The cirumcentre of the cyclic quadrilateral $ABCD$ is $O$. The second intersection point of the circles $ABO$ and $CDO$, other than $O$, is $P$, which lies in the interior of the triangle $DAO$. Choose a point $Q$ on the extension of $OP$ beyond $P$, and a point $R$ on the extension of $OP$ beyond $O$. Prove that $\angle QAP=\angle OBR$ if and only if $\angle PDQ=\angle RCO$.
2005 MOP Homework, 3
Points $M$ and $M'$ are isogonal conjugates in the traingle $ABC$. We draw perpendiculars $MP$, $MQ$, $MR$, and $M'P'$, $M'Q'$, $M'R'$ to the sides $BC$, $AC$, $AB$ respectively. Let $QR$, $Q'R'$, and $RP$, $R'P'$ and $PQ$, $P'Q'$ intersect at $E$, $F$, $G$ respectively. Show that the lines $EA$, $FB$, and $GC$ are parallel.
2005 Iran MO (3rd Round), 2
Suppose $O$ is circumcenter of triangle $ABC$. Suppose $\frac{S(OAB)+S(OAC)}2=S(OBC)$. Prove that the distance of $O$ (circumcenter) from the radical axis of the circumcircle and the 9-point circle is \[\frac {a^2}{\sqrt{9R^2-(a^2+b^2+c^2)}}\]
2007 China Second Round Olympiad, 1
In an acute triangle $ABC$, $AB<AC$. $AD$ is the altitude dropped onto $BC$ and $P$ is a point on $AD$. Let $PE\perp AC$ at $E$, $PF\perp AB$ at $F$ and let $J,K$ be the circumcentres of triangles $BDF, CDE$ respectively. Prove that $J,K,E,F$ are concyclic if and only if $P$ is the orthocentre of triangle $ABC$.
2005 South africa National Olympiad, 4
The inscribed circle of triangle $ABC$ touches the sides $BC$, $CA$ and $AB$ at $D$, $E$ and $F$ respectively. Let $Q$ denote the other point of intersection of $AD$ and the inscribed circle. Prove that $EQ$ extended passes through the midpoint of $AF$ if and only if $AC = BC$.
2012 France Team Selection Test, 3
Let $ABCD$ be a convex quadrilateral whose sides $AD$ and $BC$ are not parallel. Suppose that the circles with diameters $AB$ and $CD$ meet at points $E$ and $F$ inside the quadrilateral. Let $\omega_E$ be the circle through the feet of the perpendiculars from $E$ to the lines $AB,BC$ and $CD$. Let $\omega_F$ be the circle through the feet of the perpendiculars from $F$ to the lines $CD,DA$ and $AB$. Prove that the midpoint of the segment $EF$ lies on the line through the two intersections of $\omega_E$ and $\omega_F$.
[i]Proposed by Carlos Yuzo Shine, Brazil[/i]
1997 Balkan MO, 3
The circles $\mathcal C_1$ and $\mathcal C_2$ touch each other externally at $D$, and touch a circle $\omega$ internally at $B$ and $C$, respectively. Let $A$ be an intersection point of $\omega$ and the common tangent to $\mathcal C_1$ and $\mathcal C_2$ at $D$. Lines $AB$ and $AC$ meet $\mathcal C_1$ and $\mathcal C_2$ again at $K$ and $L$, respectively, and the line $BC$ meets $\mathcal C_1$ again at $M$ and $\mathcal C_2$ again at $N$. Prove that the lines $AD$, $KM$, $LN$ are concurrent.
[i]Greece[/i]
2011 Kazakhstan National Olympiad, 5
Given a non-degenerate triangle $ABC$, let $A_{1}, B_{1}, C_{1}$ be the point of tangency of the incircle with the sides $BC, AC, AB$. Let $Q$ and $L$ be the intersection of the segment $AA_{1}$ with the incircle and the segment $B_{1}C_{1}$ respectively. Let $M$ be the midpoint of $B_{1}C_{1}$. Let $T$ be the point of intersection of $BC$ and $B_{1}C_{1}$. Let $P$ be the foot of the perpendicular from the point $L$ on the line $AT$. Prove that the points $A_{1}, M, Q, P$ lie on a circle.
2016 USA TSTST, 2
Let $ABC$ be a scalene triangle with orthocenter $H$ and circumcenter $O$. Denote by $M$, $N$ the midpoints of $\overline{AH}$, $\overline{BC}$. Suppose the circle $\gamma$ with diameter $\overline{AH}$ meets the circumcircle of $ABC$ at $G \neq A$, and meets line $AN$ at a point $Q \neq A$. The tangent to $\gamma$ at $G$ meets line $OM$ at $P$. Show that the circumcircles of $\triangle GNQ$ and $\triangle MBC$ intersect at a point $T$ on $\overline{PN}$.
[i]Proposed by Evan Chen[/i]
2023 Brazil Cono Sur TST, 4
The diagonals of a cyclic quadrilateral $ABCD$ meet at $P$. Let $K$ and $L$ be points on the segments $CP$ and $DP$ such that the circumcircle of $PKL$ is tangent to $CD$ at $M$. Let $X$ and $Y$ be points on the segments $AP$ and $BP$ such that $AX=CK$ and $BY=DL$. Points $Z$ and $W$ are the midpoints of $PK$ and $PL$. Prove that if $C,D,X$ and $Y$ are concyclic, then $\angle MZP = \angle MWP$.
2014 NIMO Problems, 4
Points $A$, $B$, $C$, and $D$ lie on a circle such that chords $\overline{AC}$ and $\overline{BD}$ intersect at a point $E$ inside the circle. Suppose that $\angle ADE =\angle CBE = 75^\circ$, $BE=4$, and $DE=8$. The value of $AB^2$ can be written in the form $a+b\sqrt{c}$ for positive integers $a$, $b$, and $c$ such that $c$ is not divisible by the square of any prime. Find $a+b+c$.
[i]Proposed by Tony Kim[/i]
2021 Thailand Mathematical Olympiad, 8
Let $P$ be a point inside an acute triangle $ABC$. Let the lines $BP$ and $CP$ intersect the sides $AC$ and $AB$ at $D$ and $E$, respectively. Let the circles with diameters $BD$ and $CE$ intersect at points $S$ and $T$. Prove that if the points $A$, $S$, and $T$ are colinear, then $P$ lies on a median of $\triangle ABC$.
2006 Turkey Team Selection Test, 2
From a point $Q$ on a circle with diameter $AB$ different from $A$ and $B$, we draw a perpendicular to $AB$, $QH$, where $H$ lies on $AB$. The intersection points of the circle of diameter $AB$ and the circle of center $Q$ and radius $QH$ are $C$ and $D$. Prove that $CD$ bisects $QH$.
2006 Hong kong National Olympiad, 3
A convex quadrilateral $ABCD$ with $AC \neq BD$ is inscribed in a circle with center $O$. Let $E$ be the intersection of diagonals $AC$ and $BD$. If $P$ is a point inside $ABCD$ such that $\angle PAB+\angle PCB=\angle PBC+\angle PDC=90^\circ$, prove that $O$, $P$ and $E$ are collinear.
1982 AMC 12/AHSME, 24
In the adjoining figure, the circle meets the sides of an equilateral triangle at six points. If $AG=2$, $GF=13$, $FC=1$, and $HJ=7$, then $DE$ equals
[asy]
size(200);
defaultpen(fontsize(10));
real r=sqrt(22);
pair B=origin, A=16*dir(60), C=(16,0), D=(10-r,0), E=(10+r,0), F=C+1*dir(120), G=C+14*dir(120), H=13*dir(60), J=6*dir(60), O=circumcenter(G,H,J);
dot(A^^B^^C^^D^^E^^F^^G^^H^^J);
draw(Circle(O, abs(O-D))^^A--B--C--cycle, linewidth(0.7));
label("$A$", A, N);
label("$B$", B, dir(210));
label("$C$", C, dir(330));
label("$D$", D, SW);
label("$E$", E, SE);
label("$F$", F, dir(170));
label("$G$", G, dir(250));
label("$H$", H, SE);
label("$J$", J, dir(0));
label("2", A--G, dir(30));
label("13", F--G, dir(180+30));
label("1", F--C, dir(30));
label("7", H--J, dir(-30));[/asy]
$\textbf {(A) } 2\sqrt{22} \qquad \textbf {(B) } 7\sqrt{3} \qquad \textbf {(C) } 9 \qquad \textbf {(D) } 10 \qquad \textbf {(E) } 13$
2005 China Team Selection Test, 1
Triangle $ABC$ is inscribed in circle $\omega$. Circle $\gamma$ is tangent to $AB$ and $AC$ at points $P$ and $Q$ respectively. Also circle $\gamma$ is tangent to circle $\omega$ at point $S$. Let the intesection of $AS$ and $PQ$ be $T$. Prove that $\angle{BTP}=\angle{CTQ}$.
2001 AIME Problems, 6
Square $ABCD$ is inscribed in a circle. Square $EFGH$ has vertices $E$ and $F$ on $\overline{CD}$ and vertices $G$ and $H$ on the circle. The ratio of the area of square $EFGH$ to the area of square $ABCD$ can be expressed as $\frac{m}{n}$ where $m$ and $n$ are relatively prime positive integers and $m<n$. Find $10n+m$.
1999 National Olympiad First Round, 29
The length of the altitude of equilateral triangle $ ABC$ is $3$. A circle with radius $2$, which is tangent to $ \left[BC\right]$ at its midpoint, meets other two sides. If the circle meets $ AB$ and $ AC$ at $ D$ and $ E$, at the outer of $\triangle ABC$ , find the ratio $ \frac {Area\, \left(ABC\right)}{Area\, \left(ADE\right)}$.
$\textbf{(A)}\ 2\left(5 \plus{} \sqrt {3} \right) \qquad\textbf{(B)}\ 7\sqrt {2} \qquad\textbf{(C)}\ 5\sqrt {3} \\ \qquad\textbf{(D)}\ 2\left(3 \plus{} \sqrt {5} \right) \qquad\textbf{(E)}\ 2\left(\sqrt {3} \plus{} \sqrt {5} \right)$
2007 Princeton University Math Competition, 1
Triangle $ABC$ has $AC = 3$, $BC = 5$, $AB = 7$. A circle is drawn internally tangent to the circumcircle of $ABC$ at $C$, and tangent to $AB$. Let $D$ be its point of tangency with $AB$. Find $BD - DA$.
[asy]
/* File unicodetex not found. */
/* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki, go to User:Azjps/geogebra */
import graph; size(6cm);
real labelscalefactor = 2.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */
pen dotstyle = black; /* point style */
real xmin = -4.5, xmax = 7.01, ymin = -3, ymax = 8.02; /* image dimensions */
/* draw figures */
draw(circle((1.37,2.54), 5.17));
draw((-2.62,-0.76)--(-3.53,4.2));
draw((-3.53,4.2)--(5.6,-0.44));
draw((5.6,-0.44)--(-2.62,-0.76));
draw(circle((-0.9,0.48), 2.12));
/* dots and labels */
dot((-2.62,-0.76),dotstyle);
label("$C$", (-2.46,-0.51), SW * labelscalefactor);
dot((-3.53,4.2),dotstyle);
label("$A$", (-3.36,4.46), NW * labelscalefactor);
dot((5.6,-0.44),dotstyle);
label("$B$", (5.77,-0.17), SE * labelscalefactor);
dot((0.08,2.37),dotstyle);
label("$D$", (0.24,2.61), SW * labelscalefactor);
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);
label("$7$",(-3.36,4.46)--(5.77,-0.17), NE * labelscalefactor);
label("$3$",(-3.36,4.46)--(-2.46,-0.51),SW * labelscalefactor);
label("$5$",(-2.46,-0.51)--(5.77,-0.17), SE * labelscalefactor);
/* end of picture */
[/asy]
2004 USA Team Selection Test, 4
Let $ABC$ be a triangle. Choose a point $D$ in its interior. Let $\omega_1$ be a circle passing through $B$ and $D$ and $\omega_2$ be a circle passing through $C$ and $D$ so that the other point of intersection of the two circles lies on $AD$. Let $\omega_1$ and $\omega_2$ intersect side $BC$ at $E$ and $F$, respectively. Denote by $X$ the intersection of $DF$, $AB$ and $Y$ the intersection of $DE, AC$. Show that $XY \parallel BC$.
2009 China Team Selection Test, 1
Let $ ABC$ be a triangle. Point $ D$ lies on its sideline $ BC$ such that $ \angle CAD \equal{} \angle CBA.$ Circle $ (O)$ passing through $ B,D$ intersects $ AB,AD$ at $ E,F$, respectively. $ BF$ meets $ DE$ at $ G$.Denote by$ M$ the midpoint of $ AG.$ Show that $ CM\perp AO.$
2011 Morocco National Olympiad, 3
Two circles are tangent to each other internally at a point $\ T $. Let the chord $\ AB $ of the larger circle be tangent to the smaller circle at a point $\ P $. Prove that the line $\ TP $ bisects $\ \angle ATB $.
2001 India IMO Training Camp, 1
If on $ \triangle ABC$, trinagles $ AEB$ and $ AFC$ are constructed externally such that $ \angle AEB\equal{}2 \alpha$, $ \angle AFB\equal{} 2 \beta$.
$ AE\equal{}EB$, $ AF\equal{}FC$.
COnstructed externally on $ BC$ is triangle $ BDC$ with $ \angle DBC\equal{} \beta$ , $ \angle BCD\equal{} \alpha$.
Prove that 1. $ DA$ is perpendicular to $ EF$.
2. If $ T$ is the projection of $ D$ on $ BC$, then prove that $ \frac{DA}{EF}\equal{} 2 \frac{DT}{BC}$.
2016 Taiwan TST Round 2, 1
Let $O$ be the circumcenter of triangle $ABC$, and $\omega$ be the circumcircle of triangle $BOC$. Line $AO$ intersects with circle $\omega$ again at the point $G$. Let $M$ be the midpoint of side $BC$, and the perpendicular bisector of $BC$ meets circle $\omega$ at the points $O$ and $N$.
Prove that the midpoint of the segment $AN$ lies on the radical axis of the circumcircle of triangle $OMG$, and the circle whose diameter is $AO$.
2013 AMC 10, 23
In $ \bigtriangleup ABC $, $ AB = 86 $, and $ AC = 97 $. A circle with center $ A $ and radius $ AB $ intersects $ \overline{BC} $ at points $ B $ and $ X $. Moreover $ \overline{BX} $ and $ \overline{CX} $ have integer lengths. What is $ BC $?
$ \textbf{(A)} \ 11 \qquad \textbf{(B)} \ 28 \qquad \textbf{(C)} \ 33 \qquad \textbf{(D)} \ 61 \qquad \textbf{(E)} \ 72 $