This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 343

2008 Bosnia Herzegovina Team Selection Test, 2

Let $ AD$ be height of triangle $ \triangle ABC$ and $ R$ circumradius. Denote by $ E$ and $ F$ feet of perpendiculars from point $ D$ to sides $ AB$ and $ AC$. If $ AD\equal{}R\sqrt{2}$, prove that circumcenter of triangle $ \triangle ABC$ lies on line $ EF$.

2005 China Team Selection Test, 1

Triangle $ABC$ is inscribed in circle $\omega$. Circle $\gamma$ is tangent to $AB$ and $AC$ at points $P$ and $Q$ respectively. Also circle $\gamma$ is tangent to circle $\omega$ at point $S$. Let the intesection of $AS$ and $PQ$ be $T$. Prove that $\angle{BTP}=\angle{CTQ}$.

1997 Turkey Junior National Olympiad, 2

Let $ABC$ be a triangle with $|AB|=|AC|=26$, $|BC|=20$. The altitudes of $\triangle ABC$ from $A$ and $B$ cut the opposite sides at $D$ and $E$, respectively. Calculate the radius of the circle passing through $D$ and tangent to $AC$ at $E$.

2013 Romania Team Selection Test, 2

Circles $\Omega $ and $\omega $ are tangent at a point $P$ ($\omega $ lies inside $\Omega $). A chord $AB$ of $\Omega $ is tangent to $\omega $ at $C;$ the line $PC$ meets $\Omega $ again at $Q.$ Chords $QR$ and $QS$ of $ \Omega $ are tangent to $\omega .$ Let $I,X,$ and $Y$ be the incenters of the triangles $APB,$ $ARB,$ and $ASB,$ respectively. Prove that $\angle PXI+\angle PYI=90^{\circ }.$

2017 Taiwan TST Round 1, 1

Let ${\cal C}_1$ and ${\cal C}_2$ be concentric circles, with ${\cal C}_2$ in the interior of ${\cal C}_1$. From a point $A$ on ${\cal C}_1$ one draws the tangent $AB$ to ${\cal C}_2$ ($B\in {\cal C}_2$). Let $C$ be the second point of intersection of $AB$ and ${\cal C}_1$, and let $D$ be the midpoint of $AB$. A line passing through $A$ intersects ${\cal C}_2$ at $E$ and $F$ in such a way that the perpendicular bisectors of $DE$ and $CF$ intersect at a point $M$ on $AB$. Find, with proof, the ratio $AM/MC$.

2011 Kazakhstan National Olympiad, 5

Given a non-degenerate triangle $ABC$, let $A_{1}, B_{1}, C_{1}$ be the point of tangency of the incircle with the sides $BC, AC, AB$. Let $Q$ and $L$ be the intersection of the segment $AA_{1}$ with the incircle and the segment $B_{1}C_{1}$ respectively. Let $M$ be the midpoint of $B_{1}C_{1}$. Let $T$ be the point of intersection of $BC$ and $B_{1}C_{1}$. Let $P$ be the foot of the perpendicular from the point $L$ on the line $AT$. Prove that the points $A_{1}, M, Q, P$ lie on a circle.

2001 India IMO Training Camp, 1

If on $ \triangle ABC$, trinagles $ AEB$ and $ AFC$ are constructed externally such that $ \angle AEB\equal{}2 \alpha$, $ \angle AFB\equal{} 2 \beta$. $ AE\equal{}EB$, $ AF\equal{}FC$. COnstructed externally on $ BC$ is triangle $ BDC$ with $ \angle DBC\equal{} \beta$ , $ \angle BCD\equal{} \alpha$. Prove that 1. $ DA$ is perpendicular to $ EF$. 2. If $ T$ is the projection of $ D$ on $ BC$, then prove that $ \frac{DA}{EF}\equal{} 2 \frac{DT}{BC}$.

2006 Italy TST, 1

The circles $\gamma_1$ and $\gamma_2$ intersect at the points $Q$ and $R$ and internally touch a circle $\gamma$ at $A_1$ and $A_2$ respectively. Let $P$ be an arbitrary point on $\gamma$. Segments $PA_1$ and $PA_2$ meet $\gamma_1$ and $\gamma_2$ again at $B_1$ and $B_2$ respectively. a) Prove that the tangent to $\gamma_{1}$ at $B_{1}$ and the tangent to $\gamma_{2}$ at $B_{2}$ are parallel. b) Prove that $B_{1}B_{2}$ is the common tangent to $\gamma_{1}$ and $\gamma_{2}$ iff $P$ lies on $QR$.

2023 USEMO, 4

Let $ABC$ be an acute triangle with orthocenter $H$. Points $A_1$, $B_1$, $C_1$ are chosen in the interiors of sides $BC$, $CA$, $AB$, respectively, such that $\triangle A_1B_1C_1$ has orthocenter $H$. Define $A_2 = \overline{AH} \cap \overline{B_1C_1}$, $B_2 = \overline{BH} \cap \overline{C_1A_1}$, and $C_2 = \overline{CH} \cap \overline{A_1B_1}$. Prove that triangle $A_2B_2C_2$ has orthocenter $H$. [i]Ankan Bhattacharya[/i]

1978 IMO Longlists, 38

Given a circle, construct a chord that is trisected by two given noncollinear radii.

2018 Brazil Team Selection Test, 3

In triangle $ABC$, let $\omega$ be the excircle opposite to $A$. Let $D, E$ and $F$ be the points where $\omega$ is tangent to $BC, CA$, and $AB$, respectively. The circle $AEF$ intersects line $BC$ at $P$ and $Q$. Let $M$ be the midpoint of $AD$. Prove that the circle $MPQ$ is tangent to $\omega$.

2003 Mexico National Olympiad, 2

$A, B, C$ are collinear with $B$ betweeen $A$ and $C$. $K_{1}$ is the circle with diameter $AB$, and $K_{2}$ is the circle with diameter $BC$. Another circle touches $AC$ at $B$ and meets $K_{1}$ again at $P$ and $K_{2}$ again at $Q$. The line $PQ$ meets $K_{1}$ again at $R$ and $K_{2}$ again at $S$. Show that the lines $AR$ and $CS$ meet on the perpendicular to $AC$ at $B$.

1999 China Team Selection Test, 1

A circle is tangential to sides $AB$ and $AD$ of convex quadrilateral $ABCD$ at $G$ and $H$ respectively, and cuts diagonal $AC$ at $E$ and $F$. What are the necessary and sufficient conditions such that there exists another circle which passes through $E$ and $F$, and is tangential to $DA$ and $DC$ extended?

2014 All-Russian Olympiad, 2

Let $M$ be the midpoint of the side $AC$ of $ \triangle ABC$. Let $P\in AM$ and $Q\in CM$ be such that $PQ=\frac{AC}{2}$. Let $(ABQ)$ intersect with $BC$ at $X\not= B$ and $(BCP)$ intersect with $BA$ at $Y\not= B$. Prove that the quadrilateral $BXMY$ is cyclic. [i]F. Ivlev, F. Nilov[/i]

2005 India IMO Training Camp, 1

For a given triangle ABC, let X be a variable point on the line BC such that the point C lies between the points B and X. Prove that the radical axis of the incircles of the triangles ABX and ACX passes through a point independent of X. This is a slight extension of the [url=http://www.mathlinks.ro/Forum/viewtopic.php?t=41033]IMO Shortlist 2004 geometry problem 7[/url] and can be found, together with the proposed solution, among the files uploaded at http://www.mathlinks.ro/Forum/viewtopic.php?t=15622 . Note that the problem was proposed by Russia. I could not find the names of the authors, but I have two particular persons under suspicion. Maybe somebody could shade some light on this... Darij

2014 Contests, 1

Let $ABC$ be a triangle, let ${A}'$, ${B}'$, ${C}'$ be the orthogonal projections of the vertices $A$ ,$B$ ,$C$ on the lines $BC$, $CA$ and $AB$, respectively, and let $X$ be a point on the line $A{A}'$.Let $\gamma_{B}$ be the circle through $B$ and $X$, centred on the line $BC$, and let $\gamma_{C}$ be the circle through $C$ and $X$, centred on the line $BC$.The circle $\gamma_{B}$ meets the lines $AB$ and $B{B}'$ again at $M$ and ${M}'$, respectively, and the circle $\gamma_{C}$ meets the lines $AC$ and $C{C}'$ again at $N$ and ${N}'$, respectively.Show that the points $M$, ${M}'$, $N$ and ${N}'$ are collinear.

2013 Benelux, 3

Let $\triangle ABC$ be a triangle with circumcircle $\Gamma$, and let $I$ be the center of the incircle of $\triangle ABC$. The lines $AI$, $BI$ and $CI$ intersect $\Gamma$ in $D \ne A$, $E \ne B$ and $F \ne C$. The tangent lines to $\Gamma$ in $F$, $D$ and $E$ intersect the lines $AI$, $BI$ and $CI$ in $R$, $S$ and $T$, respectively. Prove that \[\vert AR\vert \cdot \vert BS\vert \cdot \vert CT\vert = \vert ID\vert \cdot \vert IE\vert \cdot \vert IF\vert.\]

2003 IberoAmerican, 2

Let $C$ and $D$ be two points on the semicricle with diameter $AB$ such that $B$ and $C$ are on distinct sides of the line $AD$. Denote by $M$, $N$ and $P$ the midpoints of $AC$, $BD$ and $CD$ respectively. Let $O_A$ and $O_B$ the circumcentres of the triangles $ACP$ and $BDP$. Show that the lines $O_AO_B$ and $MN$ are parallel.

2009 Hungary-Israel Binational, 1

Given is the convex quadrilateral $ ABCD$. Assume that there exists a point $ P$ inside the quadrilateral for which the triangles $ ABP$ and $ CDP$ are both isosceles right triangles with the right angle at the common vertex $ P$. Prove that there exists a point $ Q$ for which the triangles $ BCQ$ and $ ADQ$ are also isosceles right triangles with the right angle at the common vertex $ Q$.

1997 AMC 12/AHSME, 26

Triangle $ ABC$ and point $ P$ in the same plane are given. Point $ P$ is equidistant from $ A$ and $ B$, angle $ APB$ is twice angle $ ACB$, and $ \overline{AC}$ intersects $ \overline{BP}$ at point $ D$. If $ PB \equal{} 3$ and $ PD \equal{} 2$, then $ AD\cdot CD \equal{}$ $ \textbf{(A)}\ 5\qquad \textbf{(B)}\ 6\qquad \textbf{(C)}\ 7\qquad \textbf{(D)}\ 8\qquad \textbf{(E)}\ 9$ [asy]defaultpen(linewidth(.8pt)); dotfactor=4; pair A = origin; pair B = (2,0); pair C = (3,1); pair P = (1,2.25); pair D = intersectionpoint(P--B,C--A); dot(A);dot(B);dot(C);dot(P);dot(D); label("$A$",A,SW);label("$B$",B,SE);label("$C$",C,N);label("$D$",D,NE + N);label("$P$",P,N); draw(A--B--P--cycle); draw(A--C--B--cycle);[/asy]

2014 Peru Iberoamerican Team Selection Test, P5

The incircle $\odot (I)$ of $\triangle ABC$ touch $AC$ and $AB$ at $E$ and $F$ respectively. Let $H$ be the foot of the altitude from $A$, if $R \equiv IC \cap AH, \ \ Q \equiv BI \cap AH$ prove that the midpoint of $AH$ lies on the radical axis between $\odot (REC)$ and $\odot (QFB)$ I hope that this is not repost :)

2008 JBMO Shortlist, 3

The vertices $ A$ and $ B$ of an equilateral triangle $ ABC$ lie on a circle $k$ of radius $1$, and the vertex $ C$ is in the interior of the circle $ k$. A point $ D$, different from $ B$, lies on $ k$ so that $ AD\equal{}AB$. The line $ DC$ intersects $ k$ for the second time at point $ E$. Find the length of the line segment $ CE$.

2019 Indonesia MO, 6

Given a circle with center $O$, such that $A$ is not on the circumcircle. Let $B$ be the reflection of $A$ with respect to $O$. Now let $P$ be a point on the circumcircle. The line perpendicular to $AP$ through $P$ intersects the circle at $Q$. Prove that $AP \times BQ$ remains constant as $P$ varies.

2005 Bulgaria National Olympiad, 2

Consider two circles $k_{1},k_{2}$ touching externally at point $T$. a line touches $k_{2}$ at point $X$ and intersects $k_{1}$ at points $A$ and $B$. Let $S$ be the second intersection point of $k_{1}$ with the line $XT$ . On the arc $\widehat{TS}$ not containing $A$ and $B$ is chosen a point $C$ . Let $\ CY$ be the tangent line to $k_{2}$ with $Y\in k_{2}$ , such that the segment $CY$ does not intersect the segment $ST$ . If $I=XY\cap SC$ . Prove that : (a) the points $C,T,Y,I$ are concyclic. (b) $I$ is the excenter of triangle $ABC$ with respect to the side $BC$.

2014 ELMO Shortlist, 2

$ABCD$ is a cyclic quadrilateral inscribed in the circle $\omega$. Let $AB \cap CD = E$, $AD \cap BC = F$. Let $\omega_1, \omega_2$ be the circumcircles of $AEF, CEF$, respectively. Let $\omega \cap \omega_1 = G$, $\omega \cap \omega_2 = H$. Show that $AC, BD, GH$ are concurrent. [i]Proposed by Yang Liu[/i]