This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 7

2004 Gheorghe Vranceanu, 2

Let be two real numbers $ a<b, $ a nonempty and non-maximal subset $ K $ of the interval $ (a,b) $ and three functions $$ f:(a,b)\longrightarrow\mathbb{R}, g,h:\mathbb{R}\longrightarrow\mathbb{R} $$ satisfying the following relations. $ \text{(i)} g $ and $ h $ are primitivable. $ \text{(ii)} g-h $ hasn't any root in $ (a,b). $ $ \text{(iii)} $ The restrictions of $ f $ at $ K $ and $ (a,b)\setminus K $ are equal to $ g,h, $ respectively. Prove that $ f $ is not primitivable.

2014 Cezar Ivănescu, 2

[b]a)[/b] Give an example of function $ f:\mathbb{R}\longrightarrow\mathbb{R}_{>0 } $ that admits a primitive $ F:\mathbb{R}\longrightarrow\mathbb{R}_{>0 } $ having the property that $ F^e $ is a primitive of $ f^e. $ [b]b)[/b] Prove that there is no derivable function $ g:\mathbb{R}\longrightarrow\mathbb{R} $ that has a primitive $ G:\mathbb{R}\longrightarrow\mathbb{R} $ such that $ e^G $ is a primitive of $ e^g. $

2007 Gheorghe Vranceanu, 4

Let $ F $ be the primitive of a continuous function $ f:\mathbb{R}\longrightarrow (0,\infty ), $ with $ F(0)=0. $ Determine for which values of $ \lambda \in (0,1) $ the function $ \left( F^{-1}\circ \lambda F \right)/\text{id.} $ has limit at $ 0, $ and calculate it.

2007 Gheorghe Vranceanu, 2

Let be areal number $ r, $ a nonconstant and continuous function $ f:\mathbb{R}\longrightarrow\mathbb{R} $ with period $ T $ and $ F $ be its primitive having $ F(0)=0. $ Define the funtion $ g:\mathbb{R}\longrightarrow\mathbb{R} $ as $$ g(x)=\left\{\begin{matrix} f(1/x), & x\neq 0 \\ r, & x=0 \end{matrix}\right. $$ Prove that: [b]a)[/b] the image of $ f $ is closed. [b]b)[/b] $ g $ has the intermediate value property if and only if $ r\in f\left(\mathbb{R}\right) . $ [b]c)[/b] $ g $ is primitivable if and only if $ r=\frac{F(T)}{T} . $

2006 Grigore Moisil Urziceni, 3

Let $ f:\mathbb{R}\longrightarrow\mathbb{R} $ be a function that admits a primitive $ F. $ [b]a)[/b] Show that there exists a real number $ c $ such that $ f(c)-F(c)>1 $ if $ \lim_{x\to\infty } \frac{1+F(x)}{e^x} =-\infty . $ [b]b)[/b] Prove that there exists a real number $ c' $ such that $ f(c') -(F(c'))^2<1. $ [i]Cristinel Mortici[/i]

2006 Grigore Moisil Urziceni, 2

Consider a function $ f:\mathbb{R}\longrightarrow\mathbb{R} $ that admits primitives. Prove that: $ \text{(i)} $ Every term (function) of the sequence functions $ \left( h_n\right)_{n\ge 2}:\mathbb{R}\longrightarrow\mathbb{R} $ defined, for any natural number $ n $ as $ h_n(x)=x^nf\left( x^3 \right) , $ is primitivable. $ \text{(ii)} $ The function $ \phi :\mathbb{R}\longrightarrow\mathbb{R} $ defined as $$ \phi (x) =\left\{ \begin{matrix} e^{-1/x^2} f(x),& \quad x\neq 0 \\ 0,& \quad x=0 \end{matrix} \right. $$ is primitivable. [i]Cristinel Mortici[/i]

2007 Nicolae Păun, 2

Consider a sequence of positive real numbers $ \left( x_n \right)_{n\ge 1} $ and a primitivable function $ f:\mathbb{R}\longrightarrow\mathbb{R} . $ [b]a)[/b] Prove that $ f $ is monotonic and continuous if for any natural numbers $ n $ and real numbers $ x, $ the inequality $$ f\left( x+x_n \right)\geqslant f(x) $$ is true. [b]b)[/b] Show that $ f $ is convex if for any natural numbers $ n $ and real numbers $ x, $ the inequality $$ f\left( x+2x_n \right) +f(x)\geqslant 2f\left( x+x_n \right) $$ is true. [i]Sorin Rădulescu[/i] and [i]Ion Savu[/i]