This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1111

2019 AMC 10, 22

Tags: probability
Raashan, Sylvia, and Ted play the following game. Each starts with $\$1$. A bell rings every $15$ seconds, at which time each of the players who currently have money simultaneously chooses one of the other two players independently and at random and gives $\$1$ to that player. What is the probability that after the bell has rung $2019$ times, each player will have $\$1$? (For example, Raashan and Ted may each decide to give $\$1$ to Sylvia, and Sylvia may decide to give her dollar to Ted, at which point Raashan will have $\$0$, Sylvia would have $\$2$, and Ted would have $\$1$, and and that is the end of the first round of play. In the second round Raashan has no money to give, but Sylvia and Ted might choose each other to give their $\$1$ to, and and the holdings will be the same as the end of the second [sic] round. $\textbf{(A) } \frac{1}{7} \qquad\textbf{(B) } \frac{1}{4} \qquad\textbf{(C) } \frac{1}{3} \qquad\textbf{(D) } \frac{1}{2} \qquad\textbf{(E) } \frac{2}{3}$

2013 BMT Spring, 6

A coin is flipped until there is a head followed by two tails. What is the probability that this will take exactly $12$ flips?

2012 Waseda University Entrance Examination, 3

An unfair coin, which has the probability of $a\ \left(0<a<\frac 12\right)$ for showing $Heads$ and $1-a$ for showing $Tails$, is flipped $n\geq 2$ times. After $n$-th trial, denote by $A_n$ the event that heads are showing on at least two times and by$B_n$ the event that are not showing in the order of $tails\rightarrow heads$, until the trials $T_1,\ T_2,\ \cdots ,\ T_n$ will be finished . Answer the following questions: (1) Find the probabilities $P(A_n),\ P(B_n)$. (2) Find the probability $P(A_n\cap B_n )$. (3) Find the limit $\lim_{n\to\infty} \frac{P(A_n) P(B_n)}{P(A_n\cap B_n )}.$ You may use $\lim_{n\to\infty} nr^n=0\ (0<r<1).$

2019 Purple Comet Problems, 18

A container contains five red balls. On each turn, one of the balls is selected at random, painted blue, and returned to the container. The expected number of turns it will take before all fi ve balls are colored blue is $\frac{m}{n}$ , where $m$ and $n$ are relatively prime positive integers. Find $m + n$.

1970 Miklós Schweitzer, 12

Let $ \vartheta_1,...,\vartheta_n$ be independent, uniformly distributed, random variables in the unit interval $ [0,1]$. Define \[ h(x)\equal{} \frac1n \# \{k: \; \vartheta_k<x\ \}.\] Prove that the probability that there is an $ x_0 \in (0,1)$ such that $ h(x_0)\equal{}x_0$, is equal to $ 1\minus{} \frac1n.$ [i]G. Tusnady[/i]

2008 Stanford Mathematics Tournament, 7

Tags: probability
At the Rice Mathematics Tournament, 80% of contestants wear blue jeans, 70% wear tennis shoes, and 80% of those who wear blue jeans also wear tennis shoes. What fraction of people wearing tennis shoes are wearing blue jeans?

2009 Purple Comet Problems, 20

Five men and seven women stand in a line in random order. Let m and n be relatively prime positive integers so that $\tfrac{m}{n}$ is the probability that each man stands next to at least one woman. Find $m + n.$

1999 National Olympiad First Round, 23

Tags: probability
Hour part of a defective digital watch displays only the numbers from $1$ to $12$. After one minute from $ n: 59$, although it must display $ \left(n \plus{} 1\right): 00$, it displays $ 2n: 00$ (Think in $ mod\, 12$). For example, after $ 7: 59$, it displays $ 2: 00$ instead of $ 8: 00$. If we set the watch to an arbitrary time, what is the probability that hour part displays $4$ after exactly one day? $\textbf{(A)}\ \frac {1}{12} \qquad\textbf{(B)}\ \frac {1}{4} \qquad\textbf{(C)}\ \frac {1}{3} \qquad\textbf{(D)}\ \frac {1}{2} \qquad\textbf{(E)}\ \text{None}$

1999 Federal Competition For Advanced Students, Part 2, 3

Find all pairs $(x, y)$ of real numbers such that \[y^2 - [x]^2 = 19.99 \text{ and } x^2 + [y]^2 = 1999\] where $f(x)=[x]$ is the floor function.

2008 ITest, 12

One day while the Kubik family attends one of Michael's baseball games, Tony gets bored and walks to the creek a few yards behind the baseball field. One of Tony's classmates Mitchell sees Tony and goes to join him. While playing around the creek, the two boys find an ordinary six-sided die buried in sediment. Mitchell washes it off in the water and challenges Tony to a contest. Each of the boys rolls the die exactly once. Mitchell's roll is $3$ higher than Tony's. "Let's play once more," says Tony. Let $a/b$ be the probability that the difference between the outcomes of the two dice is again exactly $3$ (regardless of which of the boys rolls higher), where $a$ and $b$ are relatively prime positive integers. Find $a+b$.

2012 Stanford Mathematics Tournament, 10

Let $X_1$, $X_2$, ..., $X_{2012}$ be chosen independently and uniformly at random from the interval $(0,1]$. In other words, for each $X_n$, the probability that it is in the interval $(a,b]$ is $b-a$. Compute the probability that $\lceil\log_2 X_1\rceil+\lceil\log_4 X_2\rceil+\cdots+\lceil\log_{1024} X_{2012}\rceil$ is even. (Note: For any real number $a$, $\lceil a \rceil$ is defined as the smallest integer not less than $a$.)

2012 AMC 10, 9

Tags: probability
A pair of six-sided fair dice are labeled so that one die has only even numbers (two each of $2$, $4$, and $6$), and the other die has only odd numbers (two each of $1$, $3$, and $5$). The pair of dice is rolled. What is the probability that the sum of the numbers on top of the two dice is $7$? $ \textbf{(A)}\ \dfrac{1}{6} \qquad\textbf{(B)}\ \dfrac{1}{5} \qquad\textbf{(C)}\ \dfrac{1}{4} \qquad\textbf{(D)}\ \dfrac{1}{3} \qquad\textbf{(E)}\ \dfrac{1}{2} $

2004 AIME Problems, 4

Tags: probability
How many positive integers less than 10,000 have at most two different digits?

1999 AMC 8, 10

Tags: probability
A complete cycle of a traffic light takes 60 seconds. During each cycle the light is green for 25 seconds, yellow for 5 seconds, and red for 30 seconds. At a randomly chosen time, what is the probability that the light will NOT be green? $ \text{(A)}\ \frac{1}{4}\qquad\text{(B)}\ \frac{1}{3}\qquad\text{(C)}\ \frac{5}{12}\qquad\text{(D)}\ \frac{1}{2}\qquad\text{(E)}\ \frac{7}{12} $

2002 Finnish National High School Mathematics Competition, 3

$n$ pairs are formed from $n$ girls and $n$ boys at random. What is the probability of having at least one pair of girls? For which $n$ the probability is over $0,9?$

2021 Swedish Mathematical Competition, 5

Let $ n$ be a positive integer congruent to $1$ modulo $4$. Xantippa has a bag of $n + 1$ balls numbered from $ 0$ to $n$. She draws a ball (randomly, equally distributed) from the bag and reads its number: $k$, say. She keeps the ball and then picks up another $k$ balls from the bag (randomly, equally distributed, without repossession). Finally, she adds up the numbers of all the $k + 1$ balls she picked up. What is the probability that the sum will be odd?

2014 Math Prize For Girls Problems, 10

An ant is on one face of a cube. At every step, the ant walks to one of its four neighboring faces with equal probability. What is the expected (average) number of steps for it to reach the face opposite its starting face?

2001 AMC 8, 18

Tags: probability
Two dice are thrown. What is the probability that the product of the two numbers is a multiple of 5? $ \text{(A)}\ \frac{1}{36}\qquad\text{(B)}\ \frac{1}{18}\qquad\text{(C)}\ \frac{1}{6}\qquad\text{(D)}\ \frac{11}{36}\qquad\text{(E)}\ \frac{1}{3} $

2025 AIME, 7

Let $A$ be the set of positive integer divisors of $2025$. Let $B$ be a randomly selected subset of $A$. The probability that $B$ is a nonempty set with the property that the least common multiple of its element is $2025$ is $\frac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Find $m+n$.

1982 Putnam, B3

Let $p_n$ be the probability that $c+d$ is a perfect square when the integers $c$ and $d$ are selected independently at random from the set $\{1,2,\ldots,n\}$. Show that $\lim_{n\to\infty}p_n\sqrt n$ exists and express this limit in the form $r(\sqrt s-t)$, where $s$ and $t$ are integers and $r$ is a rational number.

2001 AMC 12/AHSME, 11

A box contains exactly five chips, three red and two white. Chips are randomly removed one at a time without replacement until all the red chips are drawn or all the white chips are drawn. What is the probability that the last chip drawn is white? $ \displaystyle \textbf{(A)} \ \frac {3}{10} \qquad \textbf{(B)} \ \frac {2}{5} \qquad \textbf{(C)} \ \frac {1}{2} \qquad \textbf{(D)} \ \frac {3}{5} \qquad \textbf{(E)} \ \frac {7}{10}$

1983 AMC 12/AHSME, 15

Tags: probability
Three balls marked 1,2, and 3, are placed in an urn. One ball is drawn, its number is recorded, then the ball is returned to the urn. This process is repeated and then repeated once more, and each ball is equally likely to be drawn on each occasion. If the sum of the numbers recorded is 6, what is the probability that the ball numbered 2 was drawn all three times? $\displaystyle \text{(A)} \ \frac{1}{27} \qquad \text{(B)} \ \frac{1}{8} \qquad \text{(C)} \ \frac{1}{7} \qquad \text{(D)} \ \frac{1}{6} \qquad \text{(E)} \ \frac{1}{3}$

2007 Stanford Mathematics Tournament, 8

Tags: probability
Tina writes four letters to her friends Silas, Jessica, Katie, and Lekan. She prepares an envelope for Silas, an envelope for Jessica, an envelope for Katie, and an envelope for Lekan. However, she puts each letter into a random envelope. What is the probability that no one receives the letter they are supposed to receive?

2018 Harvard-MIT Mathematics Tournament, 10

Tags: probability
Real numbers $x,y,$ and $z$ are chosen from the interval $[-1,1]$ independently and uniformly at random. What is the probability that $$\vert{x}\vert+\vert{y}\vert+\vert{z}\vert+\vert{x+y+z}\vert=\vert{x+y}\vert+\vert{y+z}\vert+\vert{z+x}\vert?$$

2007 Germany Team Selection Test, 2

Let $ S$ be a finite set of points in the plane such that no three of them are on a line. For each convex polygon $ P$ whose vertices are in $ S$, let $ a(P)$ be the number of vertices of $ P$, and let $ b(P)$ be the number of points of $ S$ which are outside $ P$. A line segment, a point, and the empty set are considered as convex polygons of $ 2$, $ 1$, and $ 0$ vertices respectively. Prove that for every real number $ x$ \[\sum_{P}{x^{a(P)}(1 \minus{} x)^{b(P)}} \equal{} 1,\] where the sum is taken over all convex polygons with vertices in $ S$. [i]Alternative formulation[/i]: Let $ M$ be a finite point set in the plane and no three points are collinear. A subset $ A$ of $ M$ will be called round if its elements is the set of vertices of a convex $ A \minus{}$gon $ V(A).$ For each round subset let $ r(A)$ be the number of points from $ M$ which are exterior from the convex $ A \minus{}$gon $ V(A).$ Subsets with $ 0,1$ and 2 elements are always round, its corresponding polygons are the empty set, a point or a segment, respectively (for which all other points that are not vertices of the polygon are exterior). For each round subset $ A$ of $ M$ construct the polynomial \[ P_A(x) \equal{} x^{|A|}(1 \minus{} x)^{r(A)}. \] Show that the sum of polynomials for all round subsets is exactly the polynomial $ P(x) \equal{} 1.$ [i]Proposed by Federico Ardila, Colombia[/i]