This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 6

2021 Science ON all problems, 4

$ABCD$ is a cyclic convex quadrilateral whose diagonals meet at $X$. The circle $(AXD)$ cuts $CD$ again at $V$ and the circle $(BXC)$ cuts $AB$ again at $U$, such that $D$ lies strictly between $C$ and $V$ and $B$ lies strictly between $A$ and $U$. Let $P\in AB\cap CD$.\\ \\ If $M$ is the intersection point of the tangents to $U$ and $V$ at $(UPV)$ and $T$ is the second intersection of circles $(UPV)$ and $(PAC)$, prove that $\angle PTM=90^o$.\\ \\ [i](Vlad Robu)[/i]

2021 Science ON Seniors, 4

$ABCD$ is a cyclic convex quadrilateral whose diagonals meet at $X$. The circle $(AXD)$ cuts $CD$ again at $V$ and the circle $(BXC)$ cuts $AB$ again at $U$, such that $D$ lies strictly between $C$ and $V$ and $B$ lies strictly between $A$ and $U$. Let $P\in AB\cap CD$.\\ \\ If $M$ is the intersection point of the tangents to $U$ and $V$ at $(UPV)$ and $T$ is the second intersection of circles $(UPV)$ and $(PAC)$, prove that $\angle PTM=90^o$.\\ \\ [i](Vlad Robu)[/i]

2019 USMCA, 3

Let $ABC$ be a scalene triangle. The incircle of $ABC$ touches $\overline{BC}$ at $D$. Let $P$ be a point on $\overline{BC}$ satisfying $\angle BAP = \angle CAP$, and $M$ be the midpoint of $\overline{BC}$. Define $Q$ to be on $\overline{AM}$ such that $\overline{PQ} \perp \overline{AM}$. Prove that the circumcircle of $\triangle AQD$ is tangent to $\overline{BC}$.

2017 Sharygin Geometry Olympiad, 1

Let $ABCD$ be a cyclic quadrilateral with $AB=BC$ and $AD = CD$. A point $M$ lies on the minor arc $CD$ of its circumcircle. The lines $BM$ and $CD$ meet at point $P$, the lines $AM$ and $BD$ meet at point $Q$. Prove that $PQ \parallel AC$.

2019 Balkan MO Shortlist, G4

Given an acute triangle $ABC$, let $M$ be the midpoint of $BC$ and $H$ the orthocentre. Let $\Gamma$ be the circle with diameter $HM$, and let $X,Y$ be distinct points on $\Gamma$ such that $AX,AY$ are tangent to $\Gamma$. Prove that $BXYC$ is cyclic.

2017 Sharygin Geometry Olympiad, 8

Let $ABCD$ be a square, and let $P$ be a point on the minor arc $CD$ of its circumcircle. The lines $PA, PB$ meet the diagonals $BD, AC$ at points $K, L$ respectively. The points $M, N$ are the projections of $K, L$ respectively to $CD$, and $Q$ is the common point of lines $KN$ and $ML$. Prove that $PQ$ bisects the segment $AB$.