This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 232

2010 Indonesia TST, 2

Circles $ \Gamma_1$ and $ \Gamma_2$ are internally tangent to circle $ \Gamma$ at $ P$ and $ Q$, respectively. Let $ P_1$ and $ Q_1$ are on $ \Gamma_1$ and $ \Gamma_2$ respectively such that $ P_1Q_1$ is the common tangent of $ P_1$ and $ Q_1$. Assume that $ \Gamma_1$ and $ \Gamma_2$ intersect at $ R$ and $ R_1$. Define $ O_1,O_2,O_3$ as the intersection of $ PQ$ and $ P_1Q_1$, the intersection of $ PR$ and $ P_1R_1$, and the intersection $ QR$ and $ Q_1R_1$. Prove that the points $ O_1,O_2,O_3$ are collinear. [i]Rudi Adha Prihandoko, Bandung[/i]

2014 Contests, 2

Consider a convex pentagon circumscribed about a circle. We name the lines that connect vertices of the pentagon with the opposite points of tangency with the circle [i]gergonnians[/i]. (a) Prove that if four gergonnians are conncurrent, the all five of them are concurrent. (b) Prove that if there is a triple of gergonnians that are concurrent, then there is another triple of gergonnians that are concurrent.

2008 Junior Balkan Team Selection Tests - Romania, 1

Let $ ABCD$ be a convex quadrilateral with opposite side not parallel. The line through $ A$ parallel to $ BD$ intersect line $ CD$ in $ F$, but parallel through $ D$ to $ AC$ intersect line $ AB$ at $ E$. Denote by $ M,N,P,Q$ midpoints of the segments $ AC,BD,AF,DE$. Prove that lines $ MN,PQ$ and $ AD$ are concurrent.

2013 NIMO Problems, 8

The diagonals of convex quadrilateral $BSCT$ meet at the midpoint $M$ of $\overline{ST}$. Lines $BT$ and $SC$ meet at $A$, and $AB = 91$, $BC = 98$, $CA = 105$. Given that $\overline{AM} \perp \overline{BC}$, find the positive difference between the areas of $\triangle SMC$ and $\triangle BMT$. [i]Proposed by Evan Chen[/i]

2006 China Team Selection Test, 1

The centre of the circumcircle of quadrilateral $ABCD$ is $O$ and $O$ is not on any of the sides of $ABCD$. $P=AC \cap BD$. The circumecentres of $\triangle{OAB}$, $\triangle{OBC}$, $\triangle{OCD}$ and $\triangle{ODA}$ are $O_1$, $O_2$, $O_3$ and $O_4$ respectively. Prove that $O_1O_3$, $O_2O_4$ and $OP$ are concurrent.

2010 Germany Team Selection Test, 2

Given a cyclic quadrilateral $ABCD$, let the diagonals $AC$ and $BD$ meet at $E$ and the lines $AD$ and $BC$ meet at $F$. The midpoints of $AB$ and $CD$ are $G$ and $H$, respectively. Show that $EF$ is tangent at $E$ to the circle through the points $E$, $G$ and $H$. [i]Proposed by David Monk, United Kingdom[/i]

1994 All-Russian Olympiad, 7

Let $ \Gamma_1,\Gamma_2$ and $ \Gamma_3$ be three non-intersecting circles,which are tangent to the circle $ \Gamma$ at points $ A_1,B_1,C_1$,respectively.Suppose that common tangent lines to $ (\Gamma_2,\Gamma_3)$,$ (\Gamma_1,\Gamma_3)$,$ (\Gamma_2,\Gamma_1)$ intersect in points $ A,B,C$. Prove that lines $ AA_1,BB_1,CC_1$ are concurrent.

2006 France Team Selection Test, 1

Let $ABCD$ be a square and let $\Gamma$ be the circumcircle of $ABCD$. $M$ is a point of $\Gamma$ belonging to the arc $CD$ which doesn't contain $A$. $P$ and $R$ are respectively the intersection points of $(AM)$ with $[BD]$ and $[CD]$, $Q$ and $S$ are respectively the intersection points of $(BM)$ with $[AC]$ and $[DC]$. Prove that $(PS)$ and $(QR)$ are perpendicular.

2004 Iran MO (3rd Round), 11

assume that ABC is acute traingle and AA' is median we extend it until it meets circumcircle at A". let $AP_a$ be a diameter of the circumcircle. the pependicular from A' to $AP_a$ meets the tangent to circumcircle at A" in the point $X_a$; we define $X_b,X_c$ similary . prove that $X_a,X_b,X_c$ are one a line.

2023 Brazil Team Selection Test, 4

Let $ABC$ be an acute triangle with altitude $\overline{AH}$, and let $P$ be a variable point such that the angle bisectors $k$ and $\ell$ of $\angle PBC$ and $\angle PCB$, respectively, meet on $\overline{AH}$. Let $k$ meet $\overline{AC}$ at $E$, $\ell$ meet $\overline{AB}$ at $F$, and $\overline{EF}$ meet $\overline{AH}$ at $Q$. Prove that as $P$ varies, line $PQ$ passes through a fixed point.

2005 Iran MO (3rd Round), 5

Suppose $H$ and $O$ are orthocenter and circumcenter of triangle $ABC$. $\omega$ is circumcircle of $ABC$. $AO$ intersects with $\omega$ at $A_1$. $A_1H$ intersects with $\omega$ at $A'$ and $A''$ is the intersection point of $\omega$ and $AH$. We define points $B',\ B'',\ C'$ and $C''$ similiarly. Prove that $A'A'',B'B''$ and $C'C''$ are concurrent in a point on the Euler line of triangle $ABC$.

2003 Brazil National Olympiad, 3

$ABCD$ is a rhombus. Take points $E$, $F$, $G$, $H$ on sides $AB$, $BC$, $CD$, $DA$ respectively so that $EF$ and $GH$ are tangent to the incircle of $ABCD$. Show that $EH$ and $FG$ are parallel.

2010 Peru IMO TST, 8

Given a cyclic quadrilateral $ABCD$, let the diagonals $AC$ and $BD$ meet at $E$ and the lines $AD$ and $BC$ meet at $F$. The midpoints of $AB$ and $CD$ are $G$ and $H$, respectively. Show that $EF$ is tangent at $E$ to the circle through the points $E$, $G$ and $H$. [i]Proposed by David Monk, United Kingdom[/i]

2014 Mediterranean Mathematics Olympiad, 4

In triangle $ABC$ let $A'$, $B'$, $C'$ respectively be the midpoints of the sides $BC$, $CA$, $AB$. Furthermore let $L$, $M$, $N$ be the projections of the orthocenter on the three sides $BC$, $CA$, $AB$, and let $k$ denote the nine-point circle. The lines $AA'$, $BB'$, $CC'$ intersect $k$ in the points $D$, $E$, $F$. The tangent lines on $k$ in $D$, $E$, $F$ intersect the lines $MN$, $LN$ and $LM$ in the points $P$, $Q$, $R$. Prove that $P$, $Q$ and $R$ are collinear.

2005 IMO Shortlist, 6

Let $ABC$ be a triangle, and $M$ the midpoint of its side $BC$. Let $\gamma$ be the incircle of triangle $ABC$. The median $AM$ of triangle $ABC$ intersects the incircle $\gamma$ at two points $K$ and $L$. Let the lines passing through $K$ and $L$, parallel to $BC$, intersect the incircle $\gamma$ again in two points $X$ and $Y$. Let the lines $AX$ and $AY$ intersect $BC$ again at the points $P$ and $Q$. Prove that $BP = CQ$.

2009 Serbia National Math Olympiad, 6

Triangle ABC has incircle w centered as S that touches the sides BC,CA and AB at P,Q and R respectively. AB isn't equal AC, the lines QR and BC intersects at point M, the circle that passes through points B and C touches the circle w at point N, circumcircle of triangle MNP intersects with line AP at L (L isn't equal to P). Then prove that S,L and M lie on the same line

2010 Contests, 3

The circle $ \Gamma $ is inscribed to the scalene triangle $ABC$. $ \Gamma $ is tangent to the sides $BC, CA$ and $AB$ at $D, E$ and $F$ respectively. The line $EF$ intersects the line $BC$ at $G$. The circle of diameter $GD$ intersects $ \Gamma $ in $R$ ($ R\neq D $). Let $P$, $Q$ ($ P\neq R , Q\neq R $) be the intersections of $ \Gamma $ with $BR$ and $CR$, respectively. The lines $BQ$ and $CP$ intersects at $X$. The circumcircle of $CDE$ meets $QR$ at $M$, and the circumcircle of $BDF$ meet $PR$ at $N$. Prove that $PM$, $QN$ and $RX$ are concurrent. [i]Author: Arnoldo Aguilar, El Salvador[/i]

2014 Olympic Revenge, 1

Let $ABC$ an acute triangle and $\Gamma$ its circumcircle. The bisector of $BAC$ intersects $\Gamma$ at $M\neq A$. A line $r$ parallel to $BC$ intersects $AC$ at $X$ and $AB$ at $Y$. Also, $MX$ and $MY$ intersect $\Gamma$ again at $S$ and $T$, respectively. If $XY$ and $ST$ intersect at $P$, prove that $PA$ is tangent to $\Gamma$.

2010 Contests, 2

Let $ABC$ be a triangle and $L$, $M$, $N$ be the midpoints of $BC$, $CA$ and $AB$, respectively. The tangent to the circumcircle of $ABC$ at $A$ intersects $LM$ and $LN$ at $P$ and $Q$, respectively. Show that $CP$ is parallel to $BQ$.

2023 Indonesia TST, 3

Let $ABC$ be an acute triangle with altitude $\overline{AH}$, and let $P$ be a variable point such that the angle bisectors $k$ and $\ell$ of $\angle PBC$ and $\angle PCB$, respectively, meet on $\overline{AH}$. Let $k$ meet $\overline{AC}$ at $E$, $\ell$ meet $\overline{AB}$ at $F$, and $\overline{EF}$ meet $\overline{AH}$ at $Q$. Prove that as $P$ varies, line $PQ$ passes through a fixed point.

2009 Olympic Revenge, 1

Given a scalene triangle $ABC$ with circuncenter $O$ and circumscribed circle $\Gamma$. Let $D, E ,F$ the midpoints of $BC, AC, AB$. Let $M=OE \cap AD$, $N=OF \cap AD$ and $P=CM \cap BN$. Let $X=AO \cap PE$, $Y=AP \cap OF$. Let $r$ the tangent of $\Gamma$ through $A$. Prove that $r, EF, XY$ are concurrent.

2023 Indonesia TST, G

Given an acute triangle $ABC$ with circumcenter $O$. The circumcircle of $BCH$ and a circle with diameter of $AC$ intersect at $P (P \neq C)$. A point $Q$ on segment of $PC$ such that $PB = PQ$. Prove that $\angle ABC = \angle AQP$

2019 Estonia Team Selection Test, 10

Let $n\geqslant 3$ be an integer. Prove that there exists a set $S$ of $2n$ positive integers satisfying the following property: For every $m=2,3,...,n$ the set $S$ can be partitioned into two subsets with equal sums of elements, with one of subsets of cardinality $m$.

2018 Estonia Team Selection Test, 5

Let $O$ be the circumcenter of an acute triangle $ABC$. Line $OA$ intersects the altitudes of $ABC$ through $B$ and $C$ at $P$ and $Q$, respectively. The altitudes meet at $H$. Prove that the circumcenter of triangle $PQH$ lies on a median of triangle $ABC$.

2010 Romanian Masters In Mathematics, 3

Let $A_1A_2A_3A_4$ be a quadrilateral with no pair of parallel sides. For each $i=1, 2, 3, 4$, define $\omega_1$ to be the circle touching the quadrilateral externally, and which is tangent to the lines $A_{i-1}A_i, A_iA_{i+1}$ and $A_{i+1}A_{i+2}$ (indices are considered modulo $4$ so $A_0=A_4, A_5=A_1$ and $A_6=A_2$). Let $T_i$ be the point of tangency of $\omega_i$ with the side $A_iA_{i+1}$. Prove that the lines $A_1A_2, A_3A_4$ and $T_2T_4$ are concurrent if and only if the lines $A_2A_3, A_4A_1$ and $T_1T_3$ are concurrent. [i]Pavel Kozhevnikov, Russia[/i]