This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1148

2008 Saint Petersburg Mathematical Olympiad, 1

Replacing any of the coefficients of quadratic trinomial $f(x)=ax^2+bx+c$ with an $1$ will result in a quadratic trinomial with at least one real root. Prove that the resulting trinomial attains a negative value at at least one point. EDIT: Oops I failed, added "with a 1." Also, I am sorry for not knowing these are posted already, however, these weren't posted in the contest lab yet, which made me think they weren't translated yet. Note: fresh translation

2014 India National Olympiad, 4

Written on a blackboard is the polynomial $x^2+x+2014$. Calvin and Hobbes take turns alternately (starting with Calvin) in the following game. At his turn, Calvin should either increase or decrease the coefficient of $x$ by $1$. And at this turn, Hobbes should either increase or decrease the constant coefficient by $1$. Calvin wins if at any point of time the polynomial on the blackboard at that instant has integer roots. Prove that Calvin has a winning stratergy.

2014 NIMO Problems, 7

Ana and Banana play a game. First, Ana picks a real number $p$ with $0 \le p \le 1$. Then, Banana picks an integer $h$ greater than $1$ and creates a spaceship with $h$ hit points. Now every minute, Ana decreases the spaceship's hit points by $2$ with probability $1-p$, and by $3$ with probability $p$. Ana wins if and only if the number of hit points is reduced to exactly $0$ at some point (in particular, if the spaceship has a negative number of hit points at any time then Ana loses). Given that Ana and Banana select $p$ and $h$ optimally, compute the integer closest to $1000p$. [i]Proposed by Lewis Chen[/i]

2011 Morocco National Olympiad, 2

Tags: quadratic , algebra
Prove that the equation $x^{2}+p|x| = qx - 1 $ has 4 distinct real solutions if and only if $p+|q|+2<0$ ($p$ and $q$ are two real parameters).

2006 Greece Junior Math Olympiad, 4

If $x , y$ are real numbers such that $x^2 + xy + y^2 = 1$ , find the least and the greatest value( minimum and maximum) of the expression $K = x^3y + xy^3$ [u]Babis[/u] [b] Sorry !!! I forgot to write that these 4 problems( 4 topics) were [u]JUNIOR LEVEL[/u][/b]

2004 Purple Comet Problems, 24

Tags: quadratic
Let $a$ be a real number greater than $1$ such that $\frac{20a}{a^2+1} = \sqrt{2}$. Find $\frac{14a}{a^2 - 1}$.

2000 USAMO, 6

Let $a_1, b_1, a_2, b_2, \dots , a_n, b_n$ be nonnegative real numbers. Prove that \[ \sum_{i, j = 1}^{n} \min\{a_ia_j, b_ib_j\} \le \sum_{i, j = 1}^{n} \min\{a_ib_j, a_jb_i\}. \]

2011 Morocco National Olympiad, 2

Tags: algebra , quadratic
Prove that the equation $x^{2}+p|x| = qx - 1 $ has 4 distinct real solutions if and only if $p+|q|+2<0$ ($p$ and $q$ are two real parameters).

1993 ITAMO, 2

Find all pairs $(p,q)$ of positive primes such that the equation $3x^2 - px + q = 0$ has two distinct rational roots.

2006 Estonia Math Open Junior Contests, 6

Find all real numbers with the following property: the difference of its cube and its square is equal to the square of the difference of its square and the number itself.

2011 Czech and Slovak Olympiad III A, 4

Consider a quadratic polynomial $ax^2+bx+c$ with real coefficients satisfying $a\ge 2$, $b\ge 2$, $c\ge 2$. Adam and Boris play the following game. They alternately take turns with Adam first. On Adam’s turn, he can choose one of the polynomial’s coefficients and replace it with the sum of the other two coefficients. On Boris’s turn, he can choose one of the polynomial’s coefficients and replace it with the product of the other two coefficients. The winner is the player who first produces a polynomial with two distinct real roots. Depending on the values of $a$, $b$ and $c$, determine who has a winning strategy.

2010 Stanford Mathematics Tournament, 4

Compute $\sqrt{1+\sqrt{1+\sqrt{1+\sqrt{1+\sqrt{1}}}}...}$

1994 AIME Problems, 6

The graphs of the equations \[ y=k, \qquad y=\sqrt{3}x+2k, \qquad y=-\sqrt{3}x+2k, \] are drawn in the coordinate plane for $k=-10,-9,-8,\ldots,9,10.$ These 63 lines cut part of the plane into equilateral triangles of side $2/\sqrt{3}.$ How many such triangles are formed?

1969 IMO Shortlist, 44

$(MON 5)$ Find the radius of the circle circumscribed about the isosceles triangle whose sides are the solutions of the equation $x^2 - ax + b = 0$.

2003 Baltic Way, 2

Prove that any real solution of $x^3+px+q=0$, where $p,q$ are real numbers, satisfies the inequality $4qx\le p^2$.

2012 Indonesia TST, 4

Determine all natural numbers $n$ such that for each natural number $a$ relatively prime with $n$ and $a \le 1 + \left\lfloor \sqrt{n} \right\rfloor$ there exists some integer $x$ with $a \equiv x^2 \mod n$. Remark: "Natural numbers" is the set of positive integers.

2011 N.N. Mihăileanu Individual, 1

Let be a quadratic polynom that has the property that the modulus of the sum between the leading and the free coefficient is smaller than the modulus of the middle coefficient. Prove that this polynom admits two distinct real roots, one belonging to the interval $ (-1,1) , $ and the other belonging outside of the interval $ (-1,1). $

1992 IMO Shortlist, 2

Let $ \mathbb{R}^\plus{}$ be the set of all non-negative real numbers. Given two positive real numbers $ a$ and $ b,$ suppose that a mapping $ f: \mathbb{R}^\plus{} \mapsto \mathbb{R}^\plus{}$ satisfies the functional equation: \[ f(f(x)) \plus{} af(x) \equal{} b(a \plus{} b)x.\] Prove that there exists a unique solution of this equation.

1999 India Regional Mathematical Olympiad, 6

Tags: quadratic
Find all solutions in integers $m,n$ of the equation \[ (m-n)^2 = \frac{4mn}{ m+n-1}. \]

2001 Canada National Olympiad, 1

[b]Randy:[/b] "Hi Rachel, that's an interesting quadratic equation you have written down. What are its roots?'' [b]Rachel:[/b] "The roots are two positive integers. One of the roots is my age, and the other root is the age of my younger brother, Jimmy.'' [b]Randy:[/b] "That is very neat! Let me see if I can figure out how old you and Jimmy are. That shouldn't be too difficult since all of your coefficients are integers. By the way, I notice that the sum of the three coefficients is a prime number.'' [b]Rachel:[/b] "Interesting. Now figure out how old I am.'' [b]Randy:[/b] "Instead, I will guess your age and substitute it for $x$ in your quadratic equation $\dots$ darn, that gives me $-55$, and not $0$.'' [b]Rachel:[/b] "Oh, leave me alone!'' (1) Prove that Jimmy is two years old. (2) Determine Rachel's age.

2010 AMC 10, 19

A circle with center $ O$ has area $ 156\pi$. Triangle $ ABC$ is equilateral, $ \overline{BC}$ is a chord on the circle, $ OA \equal{} 4\sqrt3$, and point $ O$ is outside $ \triangle ABC$. What is the side length of $ \triangle ABC$? $ \textbf{(A)}\ 2\sqrt3 \qquad\textbf{(B)}\ 6 \qquad\textbf{(C)}\ 4\sqrt3 \qquad\textbf{(D)}\ 12 \qquad\textbf{(E)}\ 18$

2006 Stanford Mathematics Tournament, 5

There exist two positive numbers $ x$ such that $ \sin(\arccos(\tan(\arcsin x)))\equal{}x$. Find the product of the two possible $ x$.

1999 Romania National Olympiad, 3

Let $a,b,c \in \mathbb{C}$ and $a \neq 0$. The roots $z_1$ and $z_2$ of the equation $az^2+bz+c=0$ satisfy $|z_1|<1$ and $|z_2|<1$. Prove that the roots $z_3$ and $z_4$ of the equation $$(a+\overline{c})z^2+(b+\overline{b})z+\overline{a}+c=0$$ satisfy $|z_3|=|z_4|=1$

2009 Moldova Team Selection Test, 1

Let $ m,n\in \mathbb{N}^*$. Find the least $ n$ for which exists $ m$, such that rectangle $ (3m \plus{} 2)\times(4m \plus{} 3)$ can be covered with $ \dfrac{n(n \plus{} 1)}{2}$ squares, among which exist $ n$ squares of length $ 1$, $ n \minus{} 1$ of length $ 2$, $ ...$, $ 1$ square of length $ n$. For the found value of $ n$ give the example of covering.

1997 Niels Henrik Abels Math Contest (Norwegian Math Olympiad) Round 2, 5

Determine $ m > 0$ so that $ x^4 \minus{} (3m\plus{}2)x^2 \plus{} m^2 \equal{} 0$ has four real solutions forming an arithmetic series: i.e., that the solutions may be written $ a, a\plus{}b, a\plus{}2b,$ and $ a\plus{}3b$ for suitable $ a$ and $ b$. A. 1 B. 3 C. 7 D. 12 E. None of these