Found problems: 1148
2005 Morocco TST, 1
Prove that the equation $3y^2 = x^4 + x$ has no positive integer solutions.
1983 IMO Longlists, 18
Let $b \geq 2$ be a positive integer.
(a) Show that for an integer $N$, written in base $b$, to be equal to the sum of the squares of its digits, it is necessary either that $N = 1$ or that $N$ have only two digits.
(b) Give a complete list of all integers not exceeding $50$ that, relative to some base $b$, are equal to the sum of the squares of their digits.
(c) Show that for any base b the number of two-digit integers that are equal to the sum of the squares of their digits is even.
(d) Show that for any odd base $b$ there is an integer other than $1$ that is equal to the sum of the squares of its digits.
1998 Tournament Of Towns, 6
In a function $f (x) = (x^2 + ax + b )/ (x^2 + cx + d)$ , the quadratics $x^2 + ax + b$ and $x^2 + cx + d$ have no common roots. Prove that the next two statements are equivalent:
(i) there is a numerical interval without any values of $f(x)$ ,
(ii) $f(x)$ can be represented in the form $f (x) = f_1 (f_2( ... f_{n-1} (f_n (x))... ))$ where each of the functions $f_j$ is o f one of the three forms $k_j x + b_j, 1/x, x^2$ .
(A Kanel)
2007 Irish Math Olympiad, 5
Suppose that $ a$ and $ b$ are real numbers such that the quadratic polynomial $ f(x)\equal{}x^2\plus{}ax\plus{}b$ has no nonnegative real roots. Prove that there exist two polynomials $ g,h$ whose coefficients are nonnegative real numbers such that: $ f(x)\equal{}\frac{g(x)}{h(x)}$ for all real numbers $ x$.
Oliforum Contest IV 2013, 2
Given an acute angled triangle $ABC$ with $M$ being the mid-point of $AB$ and $P$ and $Q$ are the feet of heights from $A$ to $BC$ and $B$ to $AC$ respectively. Show that if the line $AC$ is tangent to the circumcircle of $BMP$ then the line $BC$ is tangent to the circumcircle of $AMQ$.
2007 Mediterranean Mathematics Olympiad, 2
The diagonals $AC$ and $BD$ of a convex cyclic quadrilateral $ABCD$ intersect at point $E$. Given that $AB = 39, AE = 45, AD = 60$ and $BC = 56$, determine the length of $CD.$
1986 IMO Longlists, 26
Let $d$ be any positive integer not equal to $2, 5$ or $13$. Show that one can find distinct $a,b$ in the set $\{2,5,13,d\}$ such that $ab-1$ is not a perfect square.
2013 Stars Of Mathematics, 3
Consider the sequence $(3^{2^n} + 1)_{n\geq 1}$.
i) Prove there exist infinitely many primes, none dividing any term of the sequence.
ii) Prove there exist infinitely many primes, each dividing some term of the sequence.
[i](Dan Schwarz)[/i]
2024 JHMT HS, 5
Compute the positive difference between the two solutions to the equation $2x^2-28x+9=0$.
2006 JBMO ShortLists, 5
Determine all pairs $ (m,n)$ of natural numbers for which $ m^2\equal{}nk\plus{}2$ where $ k\equal{}\overline{n1}$.
EDIT. [color=#FF0000]It has been discovered the correct statement is with $ k\equal{}\overline{1n}$.[/color]
2011 Tokio University Entry Examination, 6
(1) Let $x>0,\ y$ be real numbers. For variable $t$, find the difference of Maximum and minimum value of the quadratic function $f(t)=xt^2+yt$ in $0\leq t\leq 1$.
(2) Let $S$ be the domain of the points $(x,\ y)$ in the coordinate plane forming the following condition:
For $x>0$ and all real numbers $t$ with $0\leq t\leq 1$ , there exists real number $z$ for which $0\leq xt^2+yt+z\leq 1$ .
Sketch the outline of $S$.
(3) Let $V$ be the domain of the points $(x,\ y,\ z) $ in the coordinate space forming the following condition:
For $0\leq x\leq 1$ and for all real numbers $t$ with $0\leq t\leq 1$, $0\leq xt^2+yt+z\leq 1$ holds.
Find the volume of $V$.
[i]2011 Tokyo University entrance exam/Science, Problem 6[/i]
2017 NIMO Summer Contest, 13
We say that $1\leq a\leq101$ is a quadratic polynomial residue modulo $101$ with respect to a quadratic polynomial $f(x)$ with integer coefficients if there exists an integer $b$ such that $101 \mid a-f(b)$. For a quadratic polynomial $f$, we define its quadratic residue set as the set of quadratic residues modulo $101$ with respect to $f(x)$. Compute the number of quadratic residue sets.
[i]Proposed by Michael Ren[/i]
2013 Stanford Mathematics Tournament, 2
Points $A$, $B$, and $C$ lie on a circle of radius $5$ such that $AB=6$ and $AC=8$. Find the smaller of the two possible values of $BC$.
2013 Balkan MO Shortlist, A6
Let $S$ be the set of positive real numbers. Find all functions $f\colon S^3 \to S$ such that, for all positive real numbers $x$, $y$, $z$ and $k$, the following three conditions are satisfied:
(a) $xf(x,y,z) = zf(z,y,x)$,
(b) $f(x, ky, k^2z) = kf(x,y,z)$,
(c) $f(1, k, k+1) = k+1$.
([i]United Kingdom[/i])
2005 Junior Balkan Team Selection Tests - Moldova, 8
The families of second degree functions $f_m, g_m: R\to R, $ are considered , $f_m (x) = (m^2 + 1) x^2 + 3mx + m^2 - 1$, $g_m (x) = m^2x^2 + mx - 1$, where $m$ is a real nonzero parameter.
Show that, for any function $h$ of the second degree with the property that $g_m (x) \le h (x) \le f_m (x)$ for any real $x$, there exists $\lambda \in [0, 1]$ which verifies the condition $h (x) = \lambda f_m (x) + (1- \lambda) g_m (x)$, whatever real $x$ is.
2001 USAMO, 3
Let $a, b, c \geq 0$ and satisfy \[ a^2+b^2+c^2 +abc = 4 . \] Show that \[ 0 \le ab + bc + ca - abc \leq 2. \]
2002 Vietnam National Olympiad, 2
Determine for which $ n$ positive integer the equation: $ a \plus{} b \plus{} c \plus{} d \equal{} n \sqrt {abcd}$ has positive integer solutions.
1955 AMC 12/AHSME, 32
If the discriminant of $ ax^2\plus{}2bx\plus{}c\equal{}0$ is zero, then another true statement about $ a$, $ b$, and $ c$ is that:
$ \textbf{(A)}\ \text{they form an arithmetic progression} \\
\textbf{(B)}\ \text{they form a geometric progression} \\
\textbf{(C)}\ \text{they are unequal} \\
\textbf{(D)}\ \text{they are all negative numbers} \\
\textbf{(E)}\ \text{only b is negative and a and c are positive}$
1990 Vietnam Team Selection Test, 1
Let be given a convex polygon $ M_0M_1\ldots M_{2n}$ ($ n\ge 1$), where $ 2n \plus{} 1$ points $ M_0$, $ M_1$, $ \ldots$, $ M_{2n}$ lie on a circle $ (C)$ with diameter $ R$ in an anticlockwise direction. Suppose that there is a point $ A$ inside this convex polygon such that $ \angle M_0AM_1$, $ \angle M_1AM_2$, $ \ldots$, $ \angle M_{2n \minus{} 1}AM_{2n}$, $ \angle M_{2n}AM_0$ are equal. Assume that $ A$ is not coincide with the center of the circle $ (C)$ and $ B$ be a point lies on $ (C)$ such that $ AB$ is perpendicular to the diameter of $ (C)$ passes through $ A$. Prove that
\[ \frac {2n \plus{} 1}{\frac {1}{AM_0} \plus{} \frac {1}{AM_1} \plus{} \cdots \plus{} \frac {1}{AM_{2n}}} < AB < \frac {AM_0 \plus{} AM_1 \plus{} \cdots \plus{} AM_{2n}}{2n \plus{} 1} < R
\]
2010 Today's Calculation Of Integral, 563
Determine the pair of constant numbers $ a,\ b,\ c$ such that for a quadratic function $ f(x) \equal{} x^2 \plus{} ax \plus{} b$, the following equation is identity with respect to $ x$.
\[ f(x \plus{} 1) \equal{} c\int_0^1 (3x^2 \plus{} 4xt)f'(t)dt\]
.
2007 All-Russian Olympiad, 6
Do there exist non-zero reals $a$, $b$, $c$ such that, for any $n>3$, there exists a polynomial $P_{n}(x) = x^{n}+\dots+a x^{2}+bx+c$, which has exactly $n$ (not necessary distinct) integral roots?
[i]N. Agakhanov, I. Bogdanov[/i]
2010 AIME Problems, 15
In $ \triangle{ABC}$ with $ AB = 12$, $ BC = 13$, and $ AC = 15$, let $ M$ be a point on $ \overline{AC}$ such that the incircles of $ \triangle{ABM}$ and $ \triangle{BCM}$ have equal radii. Let $ p$ and $ q$ be positive relatively prime integers such that $ \tfrac{AM}{CM} = \tfrac{p}{q}$. Find $ p + q$.
2014 Greece National Olympiad, 1
Find all the polynomials with real coefficients which satisfy $ (x^2-6x+8)P(x)=(x^2+2x)P(x-2)$ for all $x\in \mathbb{R}$.
2000 AIME Problems, 8
In trapezoid $ABCD,$ leg $\overline{BC}$ is perpendicular to bases $\overline{AB}$ and $\overline{CD},$ and diagonals $\overline{AC}$ and $\overline{BD}$ are perpendicular. Given that $AB=\sqrt{11}$ and $AD=\sqrt{1001},$ find $BC^2.$
2011 ELMO Shortlist, 7
Determine whether there exist two reals $x,y$ and a sequence $\{a_n\}_{n=0}^{\infty}$ of nonzero reals such that $a_{n+2}=xa_{n+1}+ya_n$ for all $n\ge0$ and for every positive real number $r$, there exist positive integers $i,j$ such that $|a_i|<r<|a_j|$.
[i]Alex Zhu.[/i]