This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1148

2010 Postal Coaching, 2

Find all non-negative integers $m,n,p,q$ such that \[ p^mq^n = (p+q)^2 +1 . \]

2007 AIME Problems, 8

The polynomial $P(x)$ is cubic. What is the largest value of $k$ for which the polynomials $Q_{1}(x) = x^{2}+(k-29)x-k$ and $Q_{2}(x) = 2x^{2}+(2k-43)x+k$ are both factors of $P(x)$?

2003 Purple Comet Problems, 16

Find the largest real number $x$ such that \[\left(\dfrac{x}{x-1}\right)^2+\left(\dfrac{x}{x+1}\right)^2=\dfrac{325}{144}.\]

2000 Baltic Way, 17

Find all real solutions to the following system of equations: \[\begin{cases} x+y+z+t=5\\xy+yz+zt+tx=4\\xyz+yzt+ztx+txy=3\\xyzt=-1\end{cases}\]

2006 Turkey Team Selection Test, 1

For all integers $n\geq 1$ we define $x_{n+1}=x_1^2+x_2^2+\cdots +x_n^2$, where $x_1$ is a positive integer. Find the least $x_1$ such that 2006 divides $x_{2006}$.

2009 Princeton University Math Competition, 8

The real numbers $x$, $y$, $z$, and $t$ satisfy the following equation: \[2x^2 + 4xy + 3y^2 - 2xz -2 yz + z^2 + 1 = t + \sqrt{y + z - t} \] Find 100 times the maximum possible value for $t$.

1957 AMC 12/AHSME, 39

Two men set out at the same time to walk towards each other from $ M$ and $ N$, $ 72$ miles apart. The first man walks at the rate of $ 4$ mph. The second man walks $ 2$ miles the first hour, $ 2\frac {1}{2}$ miles the second hour, $ 3$ miles the third hour, and so on in arithmetic progression. Then the men will meet: $ \textbf{(A)}\ \text{in 7 hours} \qquad \textbf{(B)}\ \text{in }{8\frac {1}{4}}\text{ hours}\qquad \textbf{(C)}\ \text{nearer }{M}\text{ than }{N}\qquad \\ \textbf{(D)}\ \text{nearer }{N}\text{ than }{M}\qquad \textbf{(E)}\ \text{midway between }{M}\text{ and }{N}$

1995 All-Russian Olympiad, 3

Can the equation $f(g(h(x))) = 0$, where $f$, $g$, $h$ are quadratic polynomials, have the solutions $1, 2, 3, 4, 5, 6, 7, 8$? [i]S. Tokarev[/i]

1999 Brazil Team Selection Test, Problem 5

(a) If $m, n$ are positive integers such that $2^n-1$ divides $m^2 + 9$, prove that $n$ is a power of $2$; (b) If $n$ is a power of $2$, prove that there exists a positive integer $m$ such that $2^n-1$ divides $m^2 + 9$.

2012 AMC 12/AHSME, 16

Circle $C_1$ has its center $O$ lying on circle $C_2$. The two circles meet at $X$ and $Y$. Point $Z$ in the exterior of $C_1$ lies on circle $C_2$ and $XZ=13$, $OZ=11$, and $YZ=7$. What is the radius of circle $C_1$? $ \textbf{(A)}\ 5\qquad\textbf{(B)}\ \sqrt{26}\qquad\textbf{(C)}\ 3\sqrt{3}\qquad\textbf{(D)}\ 2\sqrt{7}\qquad\textbf{(E)}\ \sqrt{30} $

2008 National Olympiad First Round, 2

For which value of $A$, does the equation $3m^2n = n^3 + A$ have a solution in natural numbers? $ \textbf{(A)}\ 301 \qquad\textbf{(B)}\ 403 \qquad\textbf{(C)}\ 415 \qquad\textbf{(D)}\ 427 \qquad\textbf{(E)}\ 481 $

2007 AIME Problems, 15

Let $ABC$ be an equilateral triangle, and let $D$ and $F$ be points on sides $BC$ and $AB$, respectively, with $FA=5$ and $CD=2$. Point $E$ lies on side $CA$ such that $\angle DEF = 60^\circ$. The area of triangle $DEF$ is $14\sqrt{3}$. The two possible values of the length of side $AB$ are $p \pm q\sqrt{r}$, where $p$ and $q$ are rational, and $r$ is an integer not divisible by the square of a prime. Find $r$.

2005 Romania Team Selection Test, 3

Let $n\geq 0$ be an integer and let $p \equiv 7 \pmod 8$ be a prime number. Prove that \[ \sum^{p-1}_{k=1} \left \{ \frac {k^{2^n}}p - \frac 12 \right\} = \frac {p-1}2 . \] [i]Călin Popescu[/i]

1994 Turkey Team Selection Test, 3

Find all integer pairs $(a,b)$ such that $a\cdot b$ divides $a^2+b^2+3$.

2004 IberoAmerican, 3

Let $ n$ and $ k$ be positive integers such as either $ n$ is odd or both $ n$ and $ k$ are even. Prove that exists integers $ a$ and $ b$ such as $ GCD(a,n) \equal{} GCD(b,n) \equal{} 1$ and $ k \equal{} a \plus{} b$

2002 USA Team Selection Test, 6

Find in explicit form all ordered pairs of positive integers $(m, n)$ such that $mn-1$ divides $m^2 + n^2$.

2004 China Team Selection Test, 1

Given non-zero reals $ a$, $ b$, find all functions $ f: \mathbb{R} \longmapsto \mathbb{R}$, such that for every $ x, y \in \mathbb{R}$, $ y \neq 0$, $ f(2x) \equal{} af(x) \plus{} bx$ and $ \displaystyle f(x)f(y) \equal{} f(xy) \plus{} f \left( \frac {x}{y} \right)$.

2018 Indonesia Juniors, day 1

The problems are really difficult to find online, so here are the problems. P1. It is known that two positive integers $m$ and $n$ satisfy $10n - 9m = 7$ dan $m \leq 2018$. The number $k = 20 - \frac{18m}{n}$ is a fraction in its simplest form. a) Determine the smallest possible value of $k$. b) If the denominator of the smallest value of $k$ is (equal to some number) $N$, determine all positive factors of $N$. c) On taking one factor out of all the mentioned positive factors of $N$ above (specifically in problem b), determine the probability of taking a factor who is a multiple of 4. I added this because my translation is a bit weird. [hide=Indonesian Version] Diketahui dua bilangan bulat positif $m$ dan $n$ dengan $10n - 9m = 7$ dan $m \leq 2018$. Bilangan $k = 20 - \frac{18m}{n}$ merupakan suatu pecahan sederhana. a) Tentukan bilangan $k$ terkecil yang mungkin. b) Jika penyebut bilangan $k$ terkecil tersebut adalah $N$, tentukan semua faktor positif dari $N$. c) Pada pengambilan satu faktor dari faktor-faktor positif $N$ di atas, tentukan peluang terambilnya satu faktor kelipatan 4.[/hide] P2. Let the functions $f, g : \mathbb{R} \to \mathbb{R}$ be given in the following graphs. [hide=Graph Construction Notes]I do not know asymptote, can you please help me draw the graphs? Here are its complete description: For both graphs, draw only the X and Y-axes, do not draw grids. Denote each axis with $X$ or $Y$ depending on which line you are referring to, and on their intercepts, draw a small node (a circle) then mark their $X$ or $Y$ coordinates only (since their other coordinates are definitely 0). Graph (1) is the function $f$, who is a quadratic function with -2 and 4 as its $X$-intercepts and 4 as its $Y$-intercept. You also put $f$ right besides the curve you have, preferably just on the right-up direction of said curve. Graph (2) is the function $g$, which is piecewise. For $x \geq 0$, $g(x) = \frac{1}{2}x - 2$, whereas for $x < 0$, $g(x) = - x - 2$. You also put $g$ right besides the curve you have, on the lower right of the line, on approximately $x = 2$.[/hide] Define the function $g \circ f$ with $(g \circ f)(x) = g(f(x))$ for all $x \in D_f$ where $D_f$ is the domain of $f$. a) Draw the graph of the function $g \circ f$. b) Determine all values of $x$ so that $-\frac{1}{2} \leq (g \circ f)(x) \leq 6$. P3. The quadrilateral $ABCD$ has side lengths $AB = BC = 4\sqrt{3}$ cm and $CD = DA = 4$ cm. All four of its vertices lie on a circle. Calculate the area of quadrilateral $ABCD$. P4. There exists positive integers $x$ and $y$, with $x < 100$ and $y > 9$. It is known that $y = \frac{p}{777} x$, where $p$ is a 3-digit number whose number in its tens place is 5. Determine the number/quantity of all possible values of $y$. P5. The 8-digit number $\overline{abcdefgh}$ (the original problem does not have an overline, which I fixed) is arranged from the set $\{1, 2, 3, 4, 5, 6, 7, 8\}$. Such number satisfies $a + c + e + g \geq b + d + f + h$. Determine the quantity of different possible (such) numbers.

2003 AMC 10, 5

Let $ d$ and $ e$ denote the solutions of $ 2x^2\plus{}3x\minus{}5\equal{}0$. What is the value of $ (d\minus{}1)(e\minus{}1)$? $ \textbf{(A)}\ \minus{}\frac{5}{2} \qquad \textbf{(B)}\ 0 \qquad \textbf{(C)}\ 3 \qquad \textbf{(D)}\ 5 \qquad \textbf{(E)}\ 6$

2005 Morocco TST, 3

Find all primes $p$ such that $p^2-p+1$ is a perfect cube.

2012 All-Russian Olympiad, 3

On a Cartesian plane, $n$ parabolas are drawn, all of which are graphs of quadratic trinomials. No two of them are tangent. They divide the plane into many areas, one of which is above all the parabolas. Prove that the border of this area has no more than $2(n-1)$ corners (i.e. the intersections of a pair of parabolas).

1984 IMO Shortlist, 2

Prove: (a) There are infinitely many triples of positive integers $m, n, p$ such that $4mn - m- n = p^2 - 1.$ (b) There are no positive integers $m, n, p$ such that $4mn - m- n = p^2.$

2011-2012 SDML (High School), 1

The function $f$ is defined by $f\left(x\right)=x^2+3x$. Find the product of all solutions of the equation $f\left(2x-1\right)=6$.

2016 Indonesia TST, 2

Let $a,b$ be two positive integers, such that $ab\neq 1$. Find all the integer values that $f(a,b)$ can take, where \[ f(a,b) = \frac { a^2+ab+b^2} { ab- 1} . \]

2013 Finnish National High School Mathematics Competition, 1

The coefficients $a,b,c$ of a polynomial $f:\mathbb{R}\to\mathbb{R}, f(x)=x^3+ax^2+bx+c$ are mutually distinct integers and different from zero. Furthermore, $f(a)=a^3$ and $f(b)=b^3.$ Determine $a,b$ and $c$.