Found problems: 87
2001 All-Russian Olympiad, 1
The polynomial $ P(x)\equal{}x^3\plus{}ax^2\plus{}bx\plus{}d$ has three distinct real roots. The polynomial $ P(Q(x))$, where $ Q(x)\equal{}x^2\plus{}x\plus{}2001$, has no real roots. Prove that $ P(2001)>\frac{1}{64}$.
1957 AMC 12/AHSME, 39
Two men set out at the same time to walk towards each other from $ M$ and $ N$, $ 72$ miles apart. The first man walks at the rate of $ 4$ mph. The second man walks $ 2$ miles the first hour, $ 2\frac {1}{2}$ miles the second hour, $ 3$ miles the third hour, and so on in arithmetic progression. Then the men will meet:
$ \textbf{(A)}\ \text{in 7 hours} \qquad \textbf{(B)}\ \text{in }{8\frac {1}{4}}\text{ hours}\qquad \textbf{(C)}\ \text{nearer }{M}\text{ than }{N}\qquad \\
\textbf{(D)}\ \text{nearer }{N}\text{ than }{M}\qquad \textbf{(E)}\ \text{midway between }{M}\text{ and }{N}$
1955 AMC 12/AHSME, 18
The discriminant of the equation $ x^2\plus{}2x\sqrt{3}\plus{}3\equal{}0$ is zero. Hence, its roots are:
$ \textbf{(A)}\ \text{real and equal} \qquad
\textbf{(B)}\ \text{rational and equal} \qquad
\textbf{(C)}\ \text{rational and unequal} \\
\textbf{(D)}\ \text{irrational and unequal} \qquad
\textbf{(E)}\ \text{imaginary}$
1993 AIME Problems, 9
Two thousand points are given on a circle. Label one of the points 1. From this point, count 2 points in the clockwise direction and label this point 2. From the point labeled 2, count 3 points in the clockwise direction and label this point 3. (See figure.) Continue this process until the labels $1, 2, 3, \dots, 1993$ are all used. Some of the points on the circle will have more than one label and some points will not have a label. What is the smallest integer that labels the same point as 1993?
[asy]
int x=101, y=3*floor(x/4);
draw(Arc(origin, 1, 360*(y-3)/x, 360*(y+4)/x));
int i;
for(i=y-2; i<y+4; i=i+1) {
dot(dir(360*i/x));
}
label("3", dir(360*(y-2)/x), dir(360*(y-2)/x));
label("2", dir(360*(y+1)/x), dir(360*(y+1)/x));
label("1", dir(360*(y+3)/x), dir(360*(y+3)/x));[/asy]
2009 Princeton University Math Competition, 1
If $\phi$ is the Golden Ratio, we know that $\frac1\phi = \phi - 1$. Define a new positive real number, called $\phi_d$, where $\frac1{\phi_d} = \phi_d - d$ (so $\phi = \phi_1$). Given that $\phi_{2009} = \frac{a + \sqrt{b}}{c}$, $a, b, c$ positive integers, and the greatest common divisor of $a$ and $c$ is 1, find $a + b + c$.
1996 Canadian Open Math Challenge, 1
The roots of the equation $x^2+4x-5 = 0$ are also the roots of the equation $2x^3+9x^2-6x-5 = 0$. What is the third root of the second equation?
2006 Cezar Ivănescu, 1
Solve the equation
[b]a)[/b] $ \log_2^2 +(x-1)\log_2 x =6-2x $ in $ \mathbb{R} . $
[b]b)[/b] $ 2^{x+1}+3^{x+1} +2^{1/x^2}+3^{1/x^2}=18 $ in $ (0,\infty ) . $
[i]Cristinel Mortici[/i]
1998 USAMTS Problems, 2
There are infinitely many ordered pairs $(m,n)$ of positive integers for which the sum
\[ m + ( m + 1) + ( m + 2) +... + ( n - 1 )+n\]
is equal to the product $mn$. The four pairs with the smallest values of $m$ are $(1, 1), (3, 6), (15, 35),$ and $(85, 204)$. Find three more $(m, n)$ pairs.
2024-25 IOQM India, 22
In a triangle $ABC$, $\angle BAC = 90^{\circ}$. Let $D$ be the point on $BC$ such that $AB + BD = AC + CD$. Suppose $BD : DC = 2:1$. if $\frac{AC}{AB} = \frac{m + \sqrt{p}}{n}$, Where $m,n$ are relatively prime positive integers and $p$ is a prime number, determine the value of $m+n+p$.
2010 Purple Comet Problems, 9
Find positive integer $n$ so that $\tfrac{80-6\sqrt{n}}{n}$ is the reciprocal of $\tfrac{80+6\sqrt{n}}{n}.$
2019 AMC 12/AHSME, 12
Positive real numbers $x \neq 1$ and $y \neq 1$ satisfy $\log_2{x} = \log_y{16}$ and $xy = 64$. What is $(\log_2{\tfrac{x}{y}})^2$?
$\textbf{(A) } \frac{25}{2} \qquad\textbf{(B) } 20 \qquad\textbf{(C) } \frac{45}{2} \qquad\textbf{(D) } 25 \qquad\textbf{(E) } 32$
2014 India IMO Training Camp, 1
Let $x$ and $y$ be rational numbers, such that $x^{5}+y^{5}=2x^{2}y^{2}$. Prove that $1-xy$ is the square of a rational number.
2011 NIMO Problems, 14
In circle $\theta_1$ with radius $1$, circles $\phi_1, \phi_2, \dots, \phi_8$, with equal radii, are drawn such that for $1 \le i \le 8$, $\phi_i$ is tangent to $\omega_1$, $\phi_{i-1}$, and $\phi_{i+1}$, where $\phi_0 = \phi_8$ and $\phi_1 = \phi_9$. There exists a circle $\omega_2$ such that $\omega_1 \neq \omega_2$ and $\omega_2$ is tangent to $\phi_i$ for $1 \le i \le 8$. The radius of $\omega_2$ can be expressed in the form $a - b\sqrt{c} -d\sqrt{e - \sqrt{f}} + g \sqrt{h - j \sqrt{k}}$ such that $a, b, \dots, k$ are positive integers and the numbers $e, f, k, \gcd(h, j)$ are squarefree. What is $a+b+c+d+e+f+g+h+j+k$.
[i]Proposed by Eugene Chen
[/i]
1971 AMC 12/AHSME, 19
If the line $y=mx+1$ intersects the ellipse $x^2+4y^2=1$ exactly once, then the value of $m^2$ is
$\textbf{(A) }\textstyle\frac{1}{2}\qquad\textbf{(B) }\frac{2}{3}\qquad\textbf{(C) }\frac{3}{4}\qquad\textbf{(D) }\frac{4}{5}\qquad \textbf{(E) }\frac{5}{6}$
1971 Canada National Olympiad, 4
Determine all real numbers $a$ such that the two polynomials $x^2+ax+1$ and $x^2+x+a$ have at least one root in common.
2009 USAMTS Problems, 2
Let $a, b, c, d$ be four real numbers such that
\begin{align*}a + b + c + d &= 8, \\
ab + ac + ad + bc + bd + cd &= 12.\end{align*}
Find the greatest possible value of $d$.
1992 AMC 12/AHSME, 28
Let $i = \sqrt{-1}$. The product of the real parts of the roots of $z^2 - z = 5 - 5i$ is
$ \textbf{(A)}\ -25\qquad\textbf{(B)}\ -6\qquad\textbf{(C)}\ -5\qquad\textbf{(D)}\ \frac{1}{4}\qquad\textbf{(E)}\ 25 $
2005 USAMTS Problems, 3
Let $r$ be a nonzero real number. The values of $z$ which satisfy the equation \[ r^4z^4 + (10r^6-2r^2)z^2-16r^5z+(9r^8+10r^4+1) = 0 \] are plotted on the complex plane (i.e. using the real part of each root as the x-coordinate
and the imaginary part as the y-coordinate). Show that the area of the convex quadrilateral with these points as vertices is independent of $r$, and find this area.
2015 AMC 10, 12
Points $(\sqrt{\pi}, a)$ and $(\sqrt{\pi}, b)$ are distinct points on the graph of $y^2+x^4=2x^2y+1$. What is $|a-b|$?
$ \textbf{(A) }1\qquad\textbf{(B) }\dfrac{\pi}{2}\qquad\textbf{(C) }2\qquad\textbf{(D) }\sqrt{1+\pi}\qquad\textbf{(E) }1+\sqrt{\pi} $
2005 AIME Problems, 7
In quadrilateral $ABCD$, $BC=8$, $CD=12$, $AD=10$, and $m\angle A= m\angle B = 60^\circ$. Given that $AB=p + \sqrt{q}$, where $p$ and $q$ are positive integers, find $p+q$.
2001 Putnam, 3
For each integer $m$, consider the polynomial \[ P_m(x)=x^4-(2m+4)x^2+(m-2)^2. \] For what values of $m$ is $P_m(x)$ the product of two non-consant polynomials with integer coefficients?
2003 Purple Comet Problems, 16
Find the largest real number $x$ such that \[\left(\dfrac{x}{x-1}\right)^2+\left(\dfrac{x}{x+1}\right)^2=\dfrac{325}{144}.\]
2000 AIME Problems, 13
The equation $2000x^6+100x^5+10x^3+x-2=0$ has exactly two real roots, one of which is $\frac{m+\sqrt{n}}r,$ where $m, n$ and $r$ are integers, $m$ and $r$ are relatively prime, and $r>0.$ Find $m+n+r.$
2003 District Olympiad, 2
Find $\displaystyle n \in \mathbb N$, $\displaystyle n \geq 2$, and the digits $\displaystyle a_1,a_2,\ldots,a_n$ such that
\[ \displaystyle \sqrt{\overline{a_1 a_2 \ldots a_n}} - \sqrt{\overline{a_1 a_2 \ldots a_{n-1}}} = a_n . \]
2015 AMC 12/AHSME, 20
Isosceles triangles $T$ and $T'$ are not congruent but have the same area and the same perimeter. The sides of $T$ have lengths $5$, $5$, and $8$, while those of $T'$ have lengths $a$, $a$, and $b$. Which of the following numbers is closest to $b$?
$\textbf{(A) }3\qquad\textbf{(B) }4\qquad\textbf{(C) }5\qquad\textbf{(D) }6\qquad\textbf{(E) }8$