This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 87

1980 AMC 12/AHSME, 8

How many pairs $(a,b)$ of non-zero real numbers satisfy the equation \[ \frac{1}{a} + \frac{1}{b} = \frac{1}{a+b}? \] $\text{(A)} \ \text{none} \qquad \text{(B)} \ 1 \qquad \text{(C)} \ 2 \qquad \text{(D)} \ \text{one pair for each} ~b \neq 0$ $\text{(E)} \ \text{two pairs for each} ~b \neq 0$

PEN H Problems, 29

Find all pairs of integers $(x, y)$ satisfying the equality \[y(x^{2}+36)+x(y^{2}-36)+y^{2}(y-12)=0.\]

2009 USAMTS Problems, 2

Let $a, b, c, d$ be four real numbers such that \begin{align*}a + b + c + d &= 8, \\ ab + ac + ad + bc + bd + cd &= 12.\end{align*} Find the greatest possible value of $d$.

2010 Contests, 1

Compute \[\sqrt{1+\sqrt{1+\sqrt{1+\sqrt{1+\sqrt{1+\sqrt{1+\cdots}}}}}}\]

1959 AMC 12/AHSME, 27

Which one of the following is [i] not [/i] true for the equation \[ix^2-x+2i=0,\] where $i=\sqrt{-1}$? $ \textbf{(A)}\ \text{The sum of the roots is 2} \qquad$ $\textbf{(B)}\ \text{The discriminant is 9}\qquad$ $\textbf{(C)}\ \text{The roots are imaginary}\qquad$ $\textbf{(D)}\ \text{The roots can be found using the quadratic formula}\qquad$ $\textbf{(E)}\ \text{The roots can be found by factoring, using imaginary numbers} $

2024-25 IOQM India, 22

In a triangle $ABC$, $\angle BAC = 90^{\circ}$. Let $D$ be the point on $BC$ such that $AB + BD = AC + CD$. Suppose $BD : DC = 2:1$. if $\frac{AC}{AB} = \frac{m + \sqrt{p}}{n}$, Where $m,n$ are relatively prime positive integers and $p$ is a prime number, determine the value of $m+n+p$.

2005 Harvard-MIT Mathematics Tournament, 10

Find the sum of the absolute values of the roots of $x^4 - 4x^3 - 4x^2 + 16x - 8 = 0$.

2014 India IMO Training Camp, 1

Let $x$ and $y$ be rational numbers, such that $x^{5}+y^{5}=2x^{2}y^{2}$. Prove that $1-xy$ is the square of a rational number.

2009 AMC 10, 20

Triangle $ ABC$ has a right angle at $ B$, $ AB \equal{} 1$, and $ BC \equal{} 2$. The bisector of $ \angle BAC$ meets $ \overline{BC}$ at $ D$. What is $ BD$? [asy]unitsize(2cm); defaultpen(linewidth(.8pt)+fontsize(8pt)); dotfactor=4; pair A=(0,1), B=(0,0), C=(2,0); pair D=extension(A,bisectorpoint(B,A,C),B,C); pair[] ds={A,B,C,D}; dot(ds); draw(A--B--C--A--D); label("$1$",midpoint(A--B),W); label("$B$",B,SW); label("$D$",D,S); label("$C$",C,SE); label("$A$",A,NW); draw(rightanglemark(C,B,A,2));[/asy]$ \textbf{(A)}\ \frac {\sqrt3 \minus{} 1}{2} \qquad \textbf{(B)}\ \frac {\sqrt5 \minus{} 1}{2} \qquad \textbf{(C)}\ \frac {\sqrt5 \plus{} 1}{2} \qquad \textbf{(D)}\ \frac {\sqrt6 \plus{} \sqrt2}{2}$ $ \textbf{(E)}\ 2\sqrt3 \minus{} 1$

2014 Math Prize For Girls Problems, 17

Let $ABC$ be a triangle. Points $D$, $E$, and $F$ are respectively on the sides $\overline{BC}$, $\overline{CA}$, and $\overline{AB}$ of $\triangle ABC$. Suppose that \[ \frac{AE}{AC} = \frac{CD}{CB} = \frac{BF}{BA} = x \] for some $x$ with $\frac{1}{2} < x < 1$. Segments $\overline{AD}$, $\overline{BE}$, and $\overline{CF}$ cut the triangle into 7 nonoverlapping regions: 4 triangles and 3 quadrilaterals. The total area of the 4 triangles equals the total area of the 3 quadrilaterals. Compute the value of $x$.

1990 Iran MO (2nd round), 2

Let $\alpha$ be a root of the equation $x^3-5x+3=0$ and let $f(x)$ be a polynomial with rational coefficients. Prove that if $f(\alpha)$ be the root of equation above, then $f(f(\alpha))$ is a root, too.

2012 AMC 10, 17

Let $a$ and $b$ be relatively prime integers with $a>b>0$ and $\tfrac{a^3-b^3}{(a-b)^3}=\tfrac{73}{3}$. What is $a-b$? $ \textbf{(A)}\ 1 \qquad\textbf{(B)}\ 2 \qquad\textbf{(C)}\ 3 \qquad\textbf{(D)}\ 4 \qquad\textbf{(E)}\ 5 $

1958 AMC 12/AHSME, 33

For one root of $ ax^2 \plus{} bx \plus{} c \equal{} 0$ to be double the other, the coefficients $ a,\,b,\,c$ must be related as follows: $ \textbf{(A)}\ 4b^2 \equal{} 9c\qquad \textbf{(B)}\ 2b^2 \equal{} 9ac\qquad \textbf{(C)}\ 2b^2 \equal{} 9a\qquad \\ \textbf{(D)}\ b^2 \minus{} 8ac \equal{} 0\qquad \textbf{(E)}\ 9b^2 \equal{} 2ac$

1998 USAMTS Problems, 2

There are infinitely many ordered pairs $(m,n)$ of positive integers for which the sum \[ m + ( m + 1) + ( m + 2) +... + ( n - 1 )+n\] is equal to the product $mn$. The four pairs with the smallest values of $m$ are $(1, 1), (3, 6), (15, 35),$ and $(85, 204)$. Find three more $(m, n)$ pairs.

1997 Turkey Junior National Olympiad, 1

Solve the equation $\sqrt {a-\sqrt{a+x}}=x$ in real numbers in terms of the real number $a>1$.

2007 Brazil National Olympiad, 1

Let $ f(x) \equal{} x^2 \plus{} 2007x \plus{} 1$. Prove that for every positive integer $ n$, the equation $ \underbrace{f(f(\ldots(f}_{n\ {\rm times}}(x))\ldots)) \equal{} 0$ has at least one real solution.

2007 Purple Comet Problems, 2

A positive number $\dfrac{m}{n}$ has the property that it is equal to the ratio of $7$ plus the number’s reciprocal and $65$ minus the number’s reciprocal. Given that $m$ and $n$ are relatively prime positive integers, find $2m + n$.

2013 AMC 10, 11

Real numbers $x$ and $y$ satisfy the equation $x^2+y^2=10x-6y-34$. What is $x+y$? $ \textbf{(A) }1\qquad\textbf{(B) }2\qquad\textbf{(C) }3\qquad\textbf{(D) }6\qquad\textbf{(E) }8 $

2010 Princeton University Math Competition, 4

Define $\displaystyle{f(x) = x + \sqrt{x + \sqrt{x + \sqrt{x + \sqrt{x + \ldots}}}}}$. Find the smallest integer $x$ such that $f(x)\ge50\sqrt{x}$. (Edit: The official question asked for the "smallest integer"; the intended question was the "smallest positive integer".)

2015 AMC 10, 12

Points $(\sqrt{\pi}, a)$ and $(\sqrt{\pi}, b)$ are distinct points on the graph of $y^2+x^4=2x^2y+1$. What is $|a-b|$? $ \textbf{(A) }1\qquad\textbf{(B) }\dfrac{\pi}{2}\qquad\textbf{(C) }2\qquad\textbf{(D) }\sqrt{1+\pi}\qquad\textbf{(E) }1+\sqrt{\pi} $

1951 AMC 12/AHSME, 26

In the equation $ \frac {x(x \minus{} 1) \minus{} (m \plus{} 1)}{(x \minus{} 1)(m \minus{} 1)} \equal{} \frac {x}{m}$ the roots are equal when $ \textbf{(A)}\ m \equal{} 1 \qquad\textbf{(B)}\ m \equal{} \frac {1}{2} \qquad\textbf{(C)}\ m \equal{} 0 \qquad\textbf{(D)}\ m \equal{} \minus{} 1 \qquad\textbf{(E)}\ m \equal{} \minus{} \frac {1}{2}$

2008 Moldova National Olympiad, 9.1

Let $ f_m: \mathbb R \to \mathbb R$, $ f_m(x)\equal{}(m^2\plus{}m\plus{}1)x^2\minus{}2(m^2\plus{}1)x\plus{}m^2\minus{}m\plus{}1,$ where $ m \in \mathbb R$. 1) Find the fixed common point of all this parabolas. 2) Find $ m$ such that the distance from that fixed point to $ Oy$ is minimal.

2011 NIMO Problems, 14

In circle $\theta_1$ with radius $1$, circles $\phi_1, \phi_2, \dots, \phi_8$, with equal radii, are drawn such that for $1 \le i \le 8$, $\phi_i$ is tangent to $\omega_1$, $\phi_{i-1}$, and $\phi_{i+1}$, where $\phi_0 = \phi_8$ and $\phi_1 = \phi_9$. There exists a circle $\omega_2$ such that $\omega_1 \neq \omega_2$ and $\omega_2$ is tangent to $\phi_i$ for $1 \le i \le 8$. The radius of $\omega_2$ can be expressed in the form $a - b\sqrt{c} -d\sqrt{e - \sqrt{f}} + g \sqrt{h - j \sqrt{k}}$ such that $a, b, \dots, k$ are positive integers and the numbers $e, f, k, \gcd(h, j)$ are squarefree. What is $a+b+c+d+e+f+g+h+j+k$. [i]Proposed by Eugene Chen [/i]

2007 AMC 12/AHSME, 21

The sum of the zeros, the product of the zeros, and the sum of the coefficients of the function $ f(x) \equal{} ax^{2} \plus{} bx \plus{} c$ are equal. Their common value must also be which of the following? $ \textbf{(A)}\ \text{the coefficient of }x^{2}\qquad \textbf{(B)}\ \text{the coefficient of }x$ $ \textbf{(C)}\ \text{the y \minus{} intercept of the graph of }y \equal{} f(x)$ $ \textbf{(D)}\ \text{one of the x \minus{} intercepts of the graph of }y \equal{} f(x)$ $ \textbf{(E)}\ \text{the mean of the x \minus{} intercepts of the graph of }y \equal{} f(x)$

1951 AMC 12/AHSME, 22

The values of $ a$ in the equation: $ \log_{10}(a^2 \minus{} 15a) \equal{} 2$ are: $ \textbf{(A)}\ \frac {15\pm\sqrt {233}}{2} \qquad\textbf{(B)}\ 20, \minus{} 5 \qquad\textbf{(C)}\ \frac {15 \pm \sqrt {305}}{2}$ $ \textbf{(D)}\ \pm20 \qquad\textbf{(E)}\ \text{none of these}$