Found problems: 248
2010 Greece National Olympiad, 3
A triangle $ ABC$ is inscribed in a circle $ C(O,R)$ and has incenter $ I$. Lines $ AI,BI,CI$ meet the circumcircle $ (O)$ of triangle $ ABC$ at points $ D,E,F$ respectively. The circles with diameter $ ID,IE,IF$ meet the sides $ BC,CA, AB$ at pairs of points $ (A_1,A_2), (B_1, B_2), (C_1, C_2)$ respectively.
Prove that the six points $ A_1,A_2, B_1, B_2, C_1, C_2$ are concyclic.
Babis
2009 Indonesia TST, 3
Let $ ABC$ be an acute triangle with $ \angle BAC\equal{}60^{\circ}$. Let $ P$ be a point in triangle $ ABC$ with $ \angle APB\equal{}\angle BPC\equal{}\angle CPA\equal{}120^{\circ}$. The foots of perpendicular from $ P$ to $ BC,CA,AB$ are $ X,Y,Z$, respectively. Let $ M$ be the midpoint of $ YZ$.
a) Prove that $ \angle YXZ\equal{}60^{\circ}$
b) Prove that $ X,P,M$ are collinear.
2020 Romania EGMO TST, P1
An acute triangle $ABC$ in which $AB<AC$ is given. The bisector of $\angle BAC$ crosses $BC$ at $D$. Point $M$ is the midpoint of $BC$. Prove that the line though centers of circles escribed on triangles $ABC$ and $ADM$ is parallel to $AD$.
2011 Puerto Rico Team Selection Test, 4
Let $P$ be a point inside the triangle $ABC$, such that the angles $\angle CBP$ and $\angle PAC$ are equal. Denote the intersection of the line $AP$ and the segment $BC$ by $D$, and the intersection of the line $BP$ with the segment $AC$ by $E$. The circumcircles of the triangles $ADC$ and $BEC$ meet at $C$ and $F$. Show that the line $CP$ bisects the angle $DFE$.
Please remember to hide your solution. (by using the hide tags of course.. I don't literally mean that you should hide it :ninja: )
2010 India IMO Training Camp, 1
Let $ABC$ be a triangle in which $BC<AC$. Let $M$ be the mid-point of $AB$, $AP$ be the altitude from $A$ on $BC$, and $BQ$ be the altitude from $B$ on to $AC$. Suppose that $QP$ produced meets $AB$ (extended) at $T$. If $H$ is the orthocenter of $ABC$, prove that $TH$ is perpendicular to $CM$.
2011 Croatia Team Selection Test, 3
Let $K$ and $L$ be the points on the semicircle with diameter $AB$. Denote intersection of $AK$ and $AL$ as $T$ and let $N$ be the point such that $N$ is on segment $AB$ and line $TN$ is perpendicular to $AB$. If $U$ is the intersection of perpendicular bisector of $AB$ an $KL$ and $V$ is a point on $KL$ such that angles $UAV$ and $UBV$ are equal. Prove that $NV$ is perpendicular to $KL$.
2013 China Western Mathematical Olympiad, 3
Let $ABC$ be a triangle, and $B_1,C_1$ be its excenters opposite $B,C$. $B_2,C_2$ are reflections of $B_1,C_1$ across midpoints of $AC,AB$. Let $D$ be the extouch at $BC$. Show that $AD$ is perpendicular to $B_2C_2$
2015 IFYM, Sozopol, 8
The quadrilateral $ABCD$ is circumscribed around a circle $k$ with center $I$ and $DA\cap CB=E$, $AB\cap DC=F$. In $\Delta EAF$ and $\Delta ECF$ are inscribed circles $k_1 (I_1,r_1)$ and $k_2 (I_2,r_2)$ respectively. Prove that the middle point $M$ of $AC$ lies on the radical axis of $k_1$ and $k_2$.
2016 AIME Problems, 6
In $\triangle ABC$ let $I$ be the center of the inscribed circle, and let the bisector of $\angle ACB$ intersect $AB$ at $L$. The line through $C$ and $L$ intersects the circumscribed circle of $\triangle ABC$ at the two points $C$ and $D$. If $LI = 2$ and $LD = 3$, then $IC = \tfrac{p}{q}$, where $p$ and $q$ are relatively prime positive integers. Find $p + q$.
2012 Serbia Team Selection Test, 3
Let $P$ and $Q$ be points inside triangle $ABC$ satisfying $\angle PAC=\angle QAB$ and $\angle PBC=\angle QBA$.
a) Prove that feet of perpendiculars from $P$ and $Q$ on the sides of triangle $ABC$ are concyclic.
b) Let $D$ and $E$ be feet of perpendiculars from $P$ on the lines $BC$ and $AC$ and $F$ foot of perpendicular from $Q$ on $AB$. Let $M$ be intersection point of $DE$ and $AB$. Prove that $MP\bot CF$.
2012 ELMO Shortlist, 1
In acute triangle $ABC$, let $D,E,F$ denote the feet of the altitudes from $A,B,C$, respectively, and let $\omega$ be the circumcircle of $\triangle AEF$. Let $\omega_1$ and $\omega_2$ be the circles through $D$ tangent to $\omega$ at $E$ and $F$, respectively. Show that $\omega_1$ and $\omega_2$ meet at a point $P$ on $BC$ other than $D$.
[i]Ray Li.[/i]
2008 Iran MO (2nd Round), 2
Let $I_a$ be the $A$-excenter of $\Delta ABC$ and the $A$-excircle of $\Delta ABC$ be tangent to the lines $AB,AC$ at $B',C'$, respectively. $ I_aB,I_aC$ meet $B'C'$ at $P,Q$, respectively. $M$ is the meet point of $BQ,CP$. Prove that the length of the perpendicular from $M$ to $BC$ is equal to $r$ where $r$ is the radius of incircle of $\Delta ABC$.
2010 India IMO Training Camp, 1
Let $ABC$ be a triangle in which $BC<AC$. Let $M$ be the mid-point of $AB$, $AP$ be the altitude from $A$ on $BC$, and $BQ$ be the altitude from $B$ on to $AC$. Suppose that $QP$ produced meets $AB$ (extended) at $T$. If $H$ is the orthocenter of $ABC$, prove that $TH$ is perpendicular to $CM$.
2004 Korea - Final Round, 1
An isosceles triangle with $AB=AC$ has an inscribed circle $O$, which touches its sides $BC,CA,AB$ at $K,L,M$ respectively. The lines $OL$ and $KM$ intersect at $N$; the lines $BN$ and $CA$ intersect at $Q$. Let $P$ be the foot of the perpendicular from $A$ on $BQ$. Suppose that $BP=AP+2\cdot PQ$. Then, what values can the ratio $\frac{AB}{BC}$ assume?
2005 Silk Road, 3
Assume $A,B,C$ are three collinear points that $B \in [AC]$. Suppose $AA'$ and $BB'$
are to parrallel lines that $A'$, $B'$ and $C$ are not collinear. Suppose $O_1$ is circumcenter of circle passing through $A$, $A'$ and $C$. Also $O_2$ is circumcenter of circle passing through $B$, $B'$ and $C$. If area of $A'CB'$ is equal to area of $O_1CO_2$, then find all possible values for $\angle CAA'$
2014 India IMO Training Camp, 1
In a triangle $ABC$, with $AB\neq AC$ and $A\neq 60^{0},120^{0}$, $D$ is a point on line $AC$ different from $C$. Suppose that the circumcentres and orthocentres of triangles $ABC$ and $ABD$ lie on a circle. Prove that $\angle ABD=\angle ACB$.
2010 Contests, 3
Let $ABCD$ be a convex quadrilateral. such that $\angle CAB = \angle CDA$ and $\angle BCA = \angle ACD$. If $M$ be the midpoint of $AB$, prove that $\angle BCM = \angle DBA$.
2012 ELMO Shortlist, 1
In acute triangle $ABC$, let $D,E,F$ denote the feet of the altitudes from $A,B,C$, respectively, and let $\omega$ be the circumcircle of $\triangle AEF$. Let $\omega_1$ and $\omega_2$ be the circles through $D$ tangent to $\omega$ at $E$ and $F$, respectively. Show that $\omega_1$ and $\omega_2$ meet at a point $P$ on $BC$ other than $D$.
[i]Ray Li.[/i]
2006 Switzerland Team Selection Test, 2
Let $D$ be inside $\triangle ABC$ and $E$ on $AD$ different to $D$. Let $\omega_1$ and $\omega_2$ be the circumscribed circles of $\triangle BDE$ and $\triangle CDE$ respectively. $\omega_1$ and $\omega_2$ intersect $BC$ in the interior points $F$ and $G$ respectively. Let $X$ be the intersection between $DG$ and $AB$ and $Y$ the intersection between $DF$ and $AC$. Show that $XY$ is $\|$ to $BC$.
2003 Moldova Team Selection Test, 3
Let $ ABCD$ be a quadrilateral inscribed in a circle of center $ O$. Let M and N be the midpoints of diagonals $ AC$ and $ BD$, respectively and let $ P$ be the intersection point of the diagonals $ AC$ and $ BD$ of the given quadrilateral .It is known that the points $ O,M,Np$ are distinct. Prove that the points $ O,N,A,C$ are concyclic if and only if the points $ O,M,B,D$ are concyclic.
[i]Proposer[/i]: [b]Dorian Croitoru[/b]
2012 ELMO Shortlist, 2
In triangle $ABC$, $P$ is a point on altitude $AD$. $Q,R$ are the feet of the perpendiculars from $P$ to $AB,AC$, and $QP,RP$ meet $BC$ at $S$ and $T$ respectively. the circumcircles of $BQS$ and $CRT$ meet $QR$ at $X,Y$.
a) Prove $SX,TY, AD$ are concurrent at a point $Z$.
b) Prove $Z$ is on $QR$ iff $Z=H$, where $H$ is the orthocenter of $ABC$.
[i]Ray Li.[/i]
2005 India IMO Training Camp, 1
For a given triangle ABC, let X be a variable point on the line BC such that the point C lies between the points B and X. Prove that the radical axis of the incircles of the triangles ABX and ACX passes through a point independent of X.
This is a slight extension of the [url=http://www.mathlinks.ro/Forum/viewtopic.php?t=41033]IMO Shortlist 2004 geometry problem 7[/url] and can be found, together with the proposed solution, among the files uploaded at http://www.mathlinks.ro/Forum/viewtopic.php?t=15622 . Note that the problem was proposed by Russia. I could not find the names of the authors, but I have two particular persons under suspicion. Maybe somebody could shade some light on this...
Darij
2007 CHKMO, 3
A convex quadrilateral $ABCD$ with $AC \neq BD$ is inscribed in a circle with center $O$. Let $E$ be the intersection of diagonals $AC$ and $BD$. If $P$ is a point inside $ABCD$ such that $\angle PAB+\angle PCB=\angle PBC+\angle PDC=90^\circ$, prove that $O$, $P$ and $E$ are collinear.